PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Panel destressing strategies for remnant pillar extraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large-scale panel destressing is a rockburst mitigation technique employed in deep hard rock mines during remnant pillar extraction. Panels are choke blasted in the pillar footwall to cutoff the far-field major stress in the mining area and deviate them around the pillar. In this study, the effects of panel geometry and far-field stress magnitude are investigated. Destress blast performance is assessed by measuring change to the energy release rate (ERR) of all mining steps during the extraction of a simplified remnant pillar due to destressing. It is demonstrated that the energy release rate (ERR) of critical stopes is reduced by 30% with the base panel geometry. The panel thickness is shown to have the most influence on the efficiency of destressing, followed by the stand-off distance between the panel and the pillar and the overhang length of the panel. The effect of far-field stress magnitude on the ERR is also investigated, and the destress blast performance is expressed as an equivalent major principal stress reduction. It is shown that with the base panel geometry, the destressing program offers the same ERR reduction as a 9.6 MPa reduction in the far-field stress for the most critical stopes. Finally, the Copper Cliff Mine (CCM) panel destressing program is presented as a case study. The ore at risk and ERR are calculated over the extraction and destressing sequence in the pillar with a pillar-wide numerical model.
Rocznik
Strony
228--240
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • McGill University, Department of Mining and Materials Engineering, 3450 University Street, Montreal, Quebec, Canada
autor
  • McGill University, Department of Mining and Materials Engineering, 3450 University Street, Montreal, Quebec, Canada
Bibliografia
  • [1] Blake W. Destressing test at the galena mine. Trans SME-AIME 1972;252(1):294-9.
  • [2] Tang B, Mitri HS. Numerical modelling of rock pre-conditioning by destress blasting. Ground Improv 2001;5:1-11.
  • [3] Saharan MR, Mitri HS. Simulations for rock fracturing by destress blasting, as applied to hard rock mining conditions. Saarbrucken: VDM Verlag; 2009.
  • [4] Zhu WC, Wei CH, Li S, Wei J, Zhang MS. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min Sci 2013;59:179-90. https://doi.org/10.1016/j.ijrmms.2012.11.004.
  • [5] Sainoki A, Emad MZ, Mitri HS. Study on the efficiency of destress blasting in deep mine drift development. Can Geotech J 2017;54(4):518-28. https://doi.org/10.1139/cgj-2016-0260.
  • [6] Baranowski P, Damaziak K, Mazurkiewicz Ł, Mertuszka P, Pytel W, Małachowski J, et al. Destress blasting of rock mass: multiscale modelling and simulation. Shock Vib 2019;2019. https://doi.org/10.1155/2019/2878969.
  • [7] Yu S, Yang X, Zhu C, Yuan Y, Wang Z. Destressing mechanics effect of surrounding rock induced by blasting precondition at deep drift development. Geotech Geol Eng 2021;39(6):4113-25. https://doi.org/10.1007/s10706-021-01687-1.
  • [8] Vennes I, Mitri H. Geomechanical effects of stress shadow created by large-scale destress blasting. J Rock Mech Geotech Eng 2017;9(6):1085-93. https://doi.org/10.1016/j.jrmge.2017.09.004 (license CC BY-NC-ND 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0/.
  • [9] Andrieux P, Brummer R, Mortazavi A, Liu Q, Simser BP. Large-Scale panel destress blast at Brunswick Mine. Cim Bull 2003;96:78-87.
  • [10] Andrieux P. Application of rock engineering systems to large-scale confined destress blasts in underground pillars. Laval University; 2005. Department of Mining, Metallurgical, and Material Sciences. [Quebec].
  • [11] Vennes I, Mitri H, Chinnasane DR, Yao M. Large-scale destress blasting for seismicity control in hard rock mines: a case study. Int J Min Sci Technol 2020;30(2):141-9. https://doi.org/10.1016/j.ijmst.2020.01.005 (license CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/.
  • [12] Vennes I, Mitri H, Chinnasane DR, Yao M. Effect of stress anisotropy on the efficiency of large-scale destress blasting. Rock Mech Rock Eng 2021;54(1):31-46. https://doi.org/10.1007/s00603-020-02252-7.
  • [13] Shnohorkian S, Mitri HS, Moreau-Verlaan L. Stability assessment of stope sequence scenarios in a diminishing ore pillar. Int J Rock Mech Min Sci 2015;59.
  • [14] Mitri HS, Tang B, Simon R. FE modelling of mining-induced energy release and storage rates. J South African Insitute Min Metall 1999:103-10.
  • [15] Drover C, Villaescusa E. A comparison of seismic response to conventional and face destress blasting during deep tunnel development. J Rock Mech Geotech Eng 2019;11(5):965-78. https://doi.org/10.1016/j.jrmge.2019.07.002.
  • [16] Wojtecki Ł, Konicek P, Mendecki MJ, Zuberek WM. Evaluation of destress blasting effectiveness using the seismic moment tensor inversion and seismic effect methods. Int J GeoMech 2022;22(4):1-11. https://doi.org/10.1007/s00603-017-1297-9.
  • [17] Fuławka K, Mertuszka P, Pytel W, Szumny M, Jones T. Seismic evaluation of the destress blasting efficiency. J Rock Mech Geotech Eng 2022. https://doi.org/10.1016/j.jrmge.2021.12.010.
  • [18] Wojtecki Ł, Mendecki MJ, Gołda I, Zuberek WM. The seismic source parameters of tremors provoked by long-hole destress blasting executed during the longwall mining of a coal seam under variable stress conditions. Pure Appl Geophys 2020;177(12):5723-39. https://doi.org/10.1007/s00024-020-02603-z.
  • [19] Castro LAM, Grabinsky MW, McCreath DR. Damage inititiation through extension fracturing in a moderately jointed brittle shear rock mass. Int J Rock Mech Min Sci 1997;34:110-3.
  • [20] Konicek P, Waclawik P. Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas. Tunn Undergr Space Technol 2018;81:237-51. https://doi.org/10.1016/j.tust.2018.07.019.
  • [21] Cook NGW, Heok E, Pretorius JPG. Rock mechanics applied to the study of rockbursts. J South African Inst Min Metall 1966;66:93.
  • [22] Qinghua X, Jianguo L, Shenxiang L, Bo G. A new method for calculating energy release rate in tunnel excavation subjected to high in situ stress. Perspect Sci 2016;7:292-8. https://doi.org/10.1016/j.pisc.2015.11.045.
  • [23] Wang W, Cheng Y, Tan G. Design Optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology. Materials 2018;11(8). https://doi.org/10.3390/ma11081311 (license CC BY 4.0. https://creativecommons.org/licenses/by/4.0/.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4bd859a-0c5a-4f10-adfc-765226b1e384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.