PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling bathymetry changes in the coastal zone - state of knowledge analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we briefly review the mathematical models used to describe the bathymetry changes in time and space. Overview of the models was carried out with particular emphasis on the problems encountered during the nonlinear equation solution, commonly used to describe the morphology of the bottom in the coastal zone of the sea. In contrast to the commonly used approach, it is proposed a linear relationship between volumetric flow of sediments transport rate and thickness of the layer of sediment grains, closely adjacent to each other and staying in motion. This linear relationship allows to precisely define the initial - boundary conditions and to apply the numerical scheme of finite difference method of „upwind” at the accuracy of the first order, not distorted by numerical errors. The author’s method also allows to implement changes to the description of the bathymetry of simultaneous changes in the distributions of the sediment grain size.
Rocznik
Tom
Strony
219--233
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Mechanics and Civil Engineering Constructions, University of Warmia and Mazury in Olsztyn
  • Department of Geotechnics, University of Technology in Koszalin
Bibliografia
  • BLAAS M., DONG C., MARCHESIELLO P., MCWILLIAMS J.C., STOLZENBACH K.D. 2007. Sediment-transport modeling on Southern Californian shelves: A ROMS case study. Cont. Shelf Res., 27: 832-853.
  • BROWN J.M., DAVIES A.G. 2009. Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont. Shelf Res., 29: 1502-1514.
  • CALLAGHAN D.P., SAINT-CAST F., NIELSEN P., BALDOCK T.E. 2006. Numerical solutions of the sediment conservation law; a review and improved formulation for coastal morphological modeling. Coastal Engineering, 53: 557-571.
  • CAYOCCA F. 2001. Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coastal Engineering, 42(2): 115-142.
  • CHIANG Y.Ch., HSIAO S.S. 2011. Coastal Morphological Modeling, In: Sediment Transport in AquaticEnvironments. Ed. A.J. Manning.
  • CHIANG Y.Ch., HSIAO S.S., LIN M.C. 2010. Numerical solutions of coastal morphodynamic evolution for complex topography. Journal of Marine Science and Technology, 18(3): pp. 333-344.
  • DE VRIEND H.J. 1987a. 2DH Mathematical modelling of morphological evolution in shallow water. Coastal Engineering, 11: 1-27.
  • DE VRIEND H.J. 1987b. Analysis of horizontally two-dimensional morphological evolution in shallow water. J. Geophys. Res., 92, C4: 3877-3893.
  • DE VRIEND H.J., ZYSERMAN J., NICHOLSON J., ROELVINK J.A., PECHON P., SOUTHGATE H.N. 1993a. Medium term 2DH coastal modelling. Coastal Engineering, 21: 193-224.
  • DE VRIEND H.J., COPABIANCO M., CHESHER T., DE SWART H.E., LATTEUX B., STIVE M.J.F. 1993b. Long term modeling of coastal Morphology. Coastal Engineering, 21: 225-269.
  • EINSTEIN H.A. 1950. The bed-load function for sediment transportation in open channel flows. US Dept. of Agriculture, Techn. Bulletin, No. 1026.
  • HARRIS C.K., WIBERG P.L. 2001. A two-dimensional, time-dependent model of uspended sediment transport and bed reworking for continental shelves. Comput. Geosci., 27(6): 675-690.
  • HARRIS C.K., SHERWOOD C.R., SIGNELL R.P., BEVER A.J., WARNER J.C. 2008. Sediment dispersal in the northwestern Adriatic Sea. J. Geophys. Res., 113, C11S03, DOI: 10.1029/2006JC003868.
  • HSU T.J., ELGAR S., GUZA R.T. 2006. Wave-induced sediment transport and onshore sandbar migration. Coastal Engineering, 53: 817-824.
  • HU K., DING P., WANG Z., YANG S. 2009. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. J. Mar. Syst., 77: 114-136.
  • JENSEN J.H., MADSEN E.Ø., FREDSØE J. 1999. Oblique flow over dredged channels. II. Sediment transport and morphology. Journal of Hydraulic Engineering 125(11): 1190-1198.
  • JIANG G.S., LEVY D., LIN C.T., OSHER S., TADMOR E. 1998. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 35(6): 2147-2168.
  • JIANG G.S., WU C.C. 1999. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 150: 561-594.
  • JOHNSON H.K., ZYSERMAN J.A. 2002. Controlling spatial oscillations in bed level update schemes. Coastal Engineering, 46(2): 109-126.
  • KACZMAREK L.M., SAWCZYŃSKI S., BIEGOWSKI J. 2011. Bathymetry changes and sand sorting during silting up of the channels. Part 1. Conservation of sediment mass. Technical Sciences, 14(2): 153-170.
  • KUROIWA M., KAMPHUIS J.W., KUCHIISHI T., MATSUBARA Y. 2003. A 3D Morphodynamic Model with Shoreline Change Based on Quasi-3d Nearshore Current Model. Proc. Asian and Pacific Coasts Conf.
  • LIU X.D., OSHER S., CHAN T. 1994. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115: 200.
  • LONG W., KIRBY J.T., SHAO Z. 2008. A numerical scheme for morphological bed level calculations. Coastal Engineering, 55(2): 167-180.
  • LUMBORG U. 2005. Modelling the deposition, erosion, and flux of cohesive sediment through Øresund. J. Mar. Syst., 56: 179-193.
  • NICHOLSON J., BROKER I., ROELVINK J.A., PRICE D., TANGUY J.M., MORENO L. 1997. Intercomparison of coastal area morphodynamic models. Coastal Engineering, 31: 97-123.
  • O’CONNOR B.A., NICHOLSON J. 1989. Modelling changes in coastal morphology. In: Sediment Transport Modeling, Ed. S.S.Y. Wang, ASCE, pp. 160-165.
  • RAKHA K.A., DEIGAARD R., BRØKER I. 1997. A phase-resolving cross shore sediment transport model for beach profile evolution. Coastal Engineering, 31: 231-261.
  • RIJN VAN L. 1984. Sediment transport. Part I. Bed load transport. Journal of Hydraulic Engineering, 110(10): 1431-1456.
  • ROELVINK J.A., VAN BANNING G.K.F.M. 1994. Design and development of Delft 3D and application to coastal morphodynamics. Hydroinformatics ’94, Balkema, Rotterdam, pp. 451-455.
  • ROELVINK J.A.,WALSTRA D.J.R., CHEN Z. 1998. Morphological modelling of Keta lagoon case. Proc. 24th Int. Conf. on Coastal Engineering. ASCE, Kobe, Japan.
  • SAINT-CAST F. 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of Coastal Sand Banks Morphodynamics). University Bordeaux I, Bordeaux.
  • SATO K., SHUTO N., TANAKA H. 1995. Numerical simulation of the sand spit flushing at a river mouth. Advances in Hydro-Science and Engineering, II (B), 1399-1406.
  • SAWCZYŃSKI S. 2012. Bathymetry changes and sediment sorting within coastal structures: a case of the silting-up of navigation channels. PhD thesis, University of Technology in Koszalin (in Polish).
  • SAWCZYŃSKI S., KACZMAREK L.M., BIEGOWSKI J. 2013. Modelling bathymetry changes within a waterway versus a laboratory experiment. Technical Sciences, 16(1): 41-62.
  • SHAO Z.Y., KIM S., YOST S.A. 2004. A portable numerical method for flow with discontinuities and shocks. Proceedings of 17th Engineering Mechanics Conference, ASCE, June 13-16, Paper, vol. 65, University of Delaware, Newark, DE, USA.
  • SOUZA A.J., HOLT J.T., PROCTOR R. 2007. Modelling SPM on the NW European shelf seas, inCoastal and Shelf Sediment Transport. Edited by P.S. Balson and M. B. Collins, Geol. Soc. Spec. Publ., 274: 147-158.
  • STRUIKSMA N., OLEWESEN K.W., FLOKSTRA C., DE VRIEND H.J. 1985. Bed deformation in curved alluvial channels. J. Hydraul. Res., 23(1).
  • VINCENT S., CALTAGIRONE J.P. 1999. Efficient solving method for unsteady incompressible interfacial flow problems. International Journal For Numerical Methods In Fluids, 30(6): 795-811.
  • WANG Z.B. 1992. Theoretical analysis on depth-integrated modeling of suspended sediment transport. J. Hydrol. Res., 30(3).
  • WATANABE A. 1988. Modeling of sediment and beach evolution. In: Nearshore Dynamics and Coastal Processes. Ed. K. Horikawa. University of Tokyo Press, Tokyo, Japan, pp. 292-302.
  • YALIN M.S., DA SILVA A.M.F. 2001. Fluvial Processes. IAHR Monograph, IAHR, Delft, The Netherlands.
  • ZANUTTIGH B. 2007. Numerical modelling of the morphological response induced by low-crested structures in Lido di Dante, Italy. Coastal Engineering, 54: 31-47.
  • ZHANGX Y., SWIFT D.J.P., FAN S., NIEDORODA A.W., REED W. 1999. Two-dimensional numerical modeling of storm deposition on the northern California shelf. Marine Geology, 154: 155-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b9ad22-cd46-4ec8-b993-231a14f747ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.