Identyfikatory
Warianty tytułu
Eksperymentalna weryfikacja modelu Hilla dla drewna
Języki publikacji
Abstrakty
Structural elements made of wood, are finding more and more applications in construction. They are becoming increasingly popular again due to their ecological nature, as shown by the latest high-rise construction projects. The development of modern wooden structures is forcing designers to look for new solutions in workmanship. New technologies such as glued-laminated timber and cross-laminated timber are currently undergoing many analyses, such as verification for load-bearing capacity, stiffness, fire resistance, acoustics and life cycle assessment. The most popular at present is massive timber. Structures made with this technology consist mainly of cross-laminated and glued-laminated timber elements. Research on cross-laminated timber has mainly focused on its bending and shear strength or modeling approaches to estimate bending strength and failure mechanisms. From the point of view of high-rise construction, aspects of compression behaviors timber elements and their lateral performance are also relevant. In this study, a nonlinear material model based on Hill’s anisotropic plasticity potential was calibrated to determine the extent to which it is suitable for simulating simple experimental tests. To this end, experimental compression tests were carried out on wooden specimens at three different angles to the fiber direction. Data from the experiments were collected in parallel using two methods: reading the force and displacement of the machine head; and using the Aramis system to observe the surface of the specimen and determine the displacements using DIC. For comparison with numerical models, both displacement fields and force-displacement curves were averaged against individual samples using proprietary codes written in Python.
Elementy konstrukcyjne wykonane z drewna znajdują coraz więcej zastosowań w budownictwie. Stają się one coraz bardziej popularne ze względu na swój ekologiczny charakter, czego dowodem są najnowsze projekty wieżowców. Rozwój nowoczesnych konstrukcji drewnianych zmusza projektantów do poszukiwania nowych rozwiązań w wykonawstwie. Nowe technologie, takie jak drewno klejone warstwowo i drewno klejone krzyżowo, są obecnie poddawane wielu analizom, takim jak weryfikacja pod kątem nośności, sztywności, odporności ogniowej, akustyki i oceny cyklu życia. Najpopularniejsze obecnie jest drewno masywne. Konstrukcje wykonane w tej technologii składają się głównie z elementów z drewna klejonego krzyżowo i warstwowo. Badania nad drewnem klejonym krzyżowo koncentrowały się głównie na jego wytrzymałości na zginanie i ścinanie lub podejściach do modelowania w celu oszacowania wytrzymałości na zginanie i mechanizmów uszkodzeń. Z punktu widzenia konstrukcji wieżowców istotne są również aspekty zachowania elementów drewnianych podczas ściskania i ich właściwości boczne. W tym badaniu skalibrowano nieliniowy model materiałowy oparty na anizotropowym potencjale plastyczności Hilla, aby określić, w jakim stopniu nadaje się on do symulacji prostych testów eksperymentalnych. W tym celu przeprowadzono eksperymentalne testy ściskania na drewnianych próbkach pod trzema różnymi kątami w stosunku do kierunku włókien. Dane z eksperymentów były zbierane równolegle przy użyciu dwóch metod: odczytu siły i przemieszczenia głowicy maszyny; oraz przy użyciu systemu Aramis do obserwacji powierzchni próbki i określania przemieszczeń za pomocą DIC. W celu porównania z modelami numerycznymi, zarówno pola przemieszczeń, jak i krzywe siła-przemieszczenie zostały uśrednione dla poszczególnych próbek przy użyciu autorskich kodów napisanych w języku Python.
Czasopismo
Rocznik
Tom
Strony
507--521
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
- [1] L. Tupenaite, V. Zilenaite, L. Kanapeckiene, T. Gecys, and I. Geipele, “Sustainability assessment of modern high-rise timber buildings”, Sustainability, vol. 13, no. 16, art. no. 8719, 2021, doi: 10.3390/su13168719.
- [2] D. Barber, “Fire safety of mass timber buildings with clt in usa”, Wood and Fiber Science, vol. 50, pp. 83-95, 2018, doi: 10.22382/wfs-2018-042.
- [3] Z. Duan, Q. Huang, and Q. Zhang, “Life cycle assessment of mass timber construction: A review”, Building and Environment, vol. 221, art. no. 109320, 2022, doi: 10.1016/j.buildenv.2022.109320.
- [4] H. Li, L. Wang, Y. Wei, B. J. Wang, and H. Jin, “Bending and shear performance of cross-laminated timber and glued-laminated timber beams: A comparative investigation”, Journal of Building Engineering, vol. 45, art. no. 103477, 2022, doi: 10.1016/j.jobe.2021.103477.
- [5] C. Vida, M. Lukacevic, J. Eberhardsteiner, and J. Füssl, “Modeling approach to estimate the bending strength and failure mechanisms of glued laminated timber beams”, Engineering Structures, vol. 255, art. no. 113862, 2022, doi: 10.1016/j.engstruct.2022.113862.
- [6] P. Wei, B. J. Wang, H. Li, L. Wang, S. Peng, and L. Zhang, “A comparative study of compression behaviors of cross-laminated timber and glued-laminated timber columns”, Construction and Building Materials, vol. 222, pp. 86-95, 2019, doi: 10.1016/j.conbuildmat.2019.06.139.
- [7] J. Xue, G. Ren, L. Qi, C. Wu, and Z. Yuan, “Experimental study on lateral performance of glued-laminated timber frame infilled with cross-laminated timber shear walls”, Engineering Structures, vol. 239, art. no. 112354, 2021, doi: 10.1016/j.engstruct.2021.112354.
- [8] C. Fenemore, “Acoustics of cross-laminated timber structures”, Ph.D. thesis, The University of Auckland, 2023.
- [9] V. Nasir, S. Ayanleye, S. Kazemirad, F. Sassani, and S. Adamopoulos, “Acoustic emission monitoring of wood materials and timber structures: A critical review”, Construction and Building Materials, vol. 350, art. no. 128877, 2022, doi: 10.1016/j.conbuildmat.2022.128877.
- [10] M. Braun and B. Kromoser, “The influence of inaccuracies in the production process on the load-bearing behaviour of timber step joints”, Construction and Building Materials, vol. 330, art. no. 127285, 2022, doi: 10.1016/j.conbuildmat.2022.127285.
- [11] M. Braun, M. Pantscharowitsch, and B. Kromoser, “Experimental investigations on the load-bearing behaviour of traditional and newly developed step joints for timber structures”, Construction and Building Materials, vol. 323, art. no. 126557, 2022, doi: 10.1016/j.conbuildmat.2022.126557.
- [12] M. Braun, J. Pełczyński, A. Al Sabouni-Zawadzka, and B. Kromoser, “Calibration and validation of a linearelastic numerical model for timber step joints based on the results of experimental investigations”, Materials, vol. 15, no. 5, art. no. 1639, 2022, doi: 10.3390/ma15051639.
- [13] B. Kromoser, M. Braun, and M. Ortner, “Construction of all-wood trusses with plywood nodes and wooden pegs: a strategy towards resource-efficient timber construction”, Applied Sciences, vol. 11, no. 6, art. no. 2568, 2021, doi: 10.3390/app11062568.
- [14] M. Pantscharowitsch, M. Braun, and B. Kromoser, “Experimental investigations on the load-bearing behaviour of robot-manufactured timber-timber joints”, presented at World Conference on Timber Engineering, Chile, 2021.
- [15] S. Berg, J. Turesson, M. Ekevad, and A. Björnfot, “In-plane shear modulus of cross-laminated timber by diagonal compression test”, BioResources, vol. 14, no. 3, pp. 5559-5572, 2019, doi: 10.15376/biores.14.3.5559-5572.
- [16] J. Turesson, A. Björnfot, S. Berg, M. Ekevad, and R. Tomasi, “Picture frame and diagonal compression testing of cross-laminated timber”, Materials and Structures, vol. 52, pp. 1-12, 2019, doi: 10.1617/s11527-019-1372-7.
- [17] K. Ostapska and K. A. Malo, “New approach to testing shear in wood on structural scale”, International Journal of Solids and Structures, vol. 212, pp. 46-60, 2021, doi: 10.1016/j.ijsolstr.2020.11.022.
- [18] C. Timbolmas, F. J. Rescalvo, M. Portela, and R. Bravo, “Analysis of poplar timber finger joints by means of digital image correlation (dic) and finite element simulation subjected to tension loading”, European Journal of Wood and Wood Products, vol. 80, no. 3, pp. 555-567, 2022, doi: 10.1007/s00107-022-01806-6.
- [19] EN 408:2010+A1:2012 Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties. CEN, 2012.
- [20] “SciPy documentation, Version: 1.11.4”. [Online]. Available: https://docs.scipy.org/doc/scipy/index.html. [Accessed: 27. Nov. 2023].
- [21] P. Obara, “Verification of orthotropic model of wood”, Archives of Civil Engineering, vol. 64, no. 3, pp. 31-44, 2018.
- [22] Abaqus Version 6.13. Simulia. Abaqus: Providence, RI, USA, 2013.
- [23] K. A. Malo, O. S. Hopperstad, and O. G. Lademo, “Calibration of anisotropic yield criteria using uniaxial tension tests and bending tests”, Journal of Materials Processing Technology, vol. 80-81, pp. 538-544, 1998, doi: 10.1016/S0924-0136(98)00202-7.
- [24] S. Pech, M. Lukacevic, and J. Füssl, “A robust multisurface return-mapping algorithm and its implementation in Abaqus”, Finite Elements in Analysis and Design, vol. 190, art. no. 103531, 2021, doi: 10.1016/j.finel.2021.103531.
- [25] M. Lukacevic,W. Lederer, and J. Füssl, “A microstructure-based multisurface failure criterion for the description of brittle and ductile failure mechanisms of clear-wood”, Engineering Fracture Mechanics, vol. 176, pp. 83-99, 2017, doi: 10.1016/j.engfracmech.2017.02.020.
- [26] M. Lukacevic, J. Füssl, and R. Lampert, “Failure mechanisms of clear wood identified at wood cell level by an approach based on the extended finite element method”, Engineering Fracture Mechanics, vol. 144, pp. 158-175, 2015, doi: 10.1016/j.engfracmech.2015.06.066.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b990e2-82b7-4f08-adb7-43d1159fdb55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.