Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Paper presents the assessment of impact of heat treatment on durability in low-cycle fatigue conditions (under constant load) in castings made using post-production scrap of MAR-247 and IN-713C superalloys. Castings were obtained using modification and filtration methods. Additionally, casting made of MAR-247 were subjected to heat treatment consisting of solution treatment and subsequent aging. During low-cycle fatigue test the cyclic creep process were observed. It was demonstrated that the fine-grained samples have significantly higher durability in test conditions and , at the same time, lower values of plastic deformation to rupture Δ□pl. It has been also proven that durability of fine-grained MAR-247 samples can be further raised by about 60% using aforementioned heat treatment.
Czasopismo
Rocznik
Tom
Strony
17--20
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] Seon-gab, K., Young-ha, H., Tae-gu K. & Chang-min, S. (2008). Failure analysis of J85 engine turbine blades, Engineering Failure Analysis, vol. 15. 94-400.
- [2] Haijun, T., Dashu C., Hongyu, Y., Mingli, X. & Ruichun, D. (2009). Fretting fatigue failure of an aero engine turbine blade, Engineering Failure Analysis, vol. 16. 2004-2008.
- [3] Strang, A. (1980). High Temperature Properties of Coated Superalloys, Behaviour of High Temperature Alloys in Aggressive Environmeents, The Metals Society, London, UK 595-611.
- [4] Zielińska, M. Sieniawski, J. & Wierzbińska, M. (2008). Effect of modification on microstructure and mechanical properties of cobalt casting superalloy, Archives of Metallurgy and Materials, vol. 53, issue 3. 887-893.
- [5] Binczyk, F. & Śleziona, J. (2010). Effect of modification on the mechanical properties of IN-713C alloy, Archives of Foundry Engineering, vol. 10, issue 1. 195-198.
- [6] Xiong, Y., Yang, A., Guo, Y., Liu, W. & Liu, L. (2001). Grain refinement of superalloys K3 and K4169 by the addition of refiners, Science and Technology of Advanced Materials, 2. 13-17.
- [7] Binczyk, F., Śleziona, J. Gradoń, P. (2011). Modification of the macrostructure of nickel superalloys with cobalt nanoparticles, Composites, no. 1, 49-55.
- [8] Xiong, Y., Du, J., Wie, X., Yang, A. & Liu, L. (2004). Grain refinement of Superalloy IN 718C by the addition of Inoculants, Metallurgical and Materials Transactions A, vol. 35A, July. 2111-2114.
- [9] Binczyk, F. & Śleziona, J. (2010). The ATD thermal analysis of selected nickel superalloys, Archives of Foundry Engineering, vol. 10, issue 2. 13-19.
- [10] Cieśla, M., Binczyk, F. & Mańka, M. (2012). Impact of surface and volume modification of nickel superalloys IN-713C and MAR-247 on high temperature creep resistance, Archives of Foundry Engineering, vol. 12 issue 4. 17-24.
- [11] Binczyk, F., Gradoń, P. & Mańka, M. (2012). Mechanical Properties And Creep Resistance of Nickel Alloys After Complex Modification And Double Filtration, Archives of Foundry Engineering, vol. 12, issue 2. 5–8.
- [12] Frost, H.J., Ashby, M.F. (1982). Deformation-Mechanism Maps. The plasticity and creep of metals and ceramics, Oxford, Pergamon press 166.
- [13] Nabarro, F.R.N., Cress, C.M. & Kotschy, P. (1996). Thermodynamic driving force for rafting in superalloys. Acta materialia 44. 3189-3198.
- [14] Epishin, A. & Link, T. (2004). Mechanism of high temperature creep of nickel-based superalloys under low applied stresses. Philosophical Magazine 84. 1979-20.
- [15] Cieśla, M. (2009). Durability of ŻS6U nickel superalloy with aluminide protective layer in thermal and mechanical load conditions, Monograph, Editor: Wydawnictwo Pol. Śl. (in Polish).
- [16] Okrajni, J., Cieśla, M. & Swadźba, L. (1998). High-Temperature Low-Cycle Fatigue and Creep Behaviour of Nickel-Based Superalloys with Heat-Resistant Coatings. Fatigue and Fracture of Materials and Engineering Structures, vol. 21. 947-954.
- [17] Castillo, R., Koul, A.K. Immarigeon, J-P. (1988). The Effects of Sernice Exposure on the Creep Properties of Cast IN-738LC Subjected to Low Stress High Temperature Creep Conditions, Superalloys 88, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, Eds., The Metallurgical Society.
- [18] Zielińska, M., Sieniawski, J. & Poreba, M. (2007). Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified COAl2O4, Archives of Materials Science and Engineering, vol. 28, issue 10. 629-632.
- [19] Wyrzykowski, J., Pleszakow, E., Sieniawski, J. (1999). Deformation and cracking of metals. WNT Warszawa (in Polish).
- [20] Bernsztejn, M.Ł. Zajmowskij, W.A. (1973). Structure and mechanical properties of metals, WNT Warszawa (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b8b6ed-a3e2-4cc5-843a-7b38588f47ae