PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Length of Components from Polymer Composite on Selected Machinability Indicators in the Circumferential Milling Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the research on the influence of the length of elements made of carbon fiber reinforced plastics (CFRP) and glass fiber reinforced plastics (GFRP) on surface roughness, surface topography, passive forces and cutting torques after circumferential milling with diamond-coated inserts (PCD). The paper also presents the results of the research on the stiffness of the elements depending on their length. The samples of composite materials were clamped in a vise at the machining center. The length of the element was defined as the unsupported distance between the milled surface and the place of attachment of the composite element. With constant milling parameters, the maximum values and amplitudes of the values of passive forces and cutting torques at variable element lengths were determined. The obtained surface was measured in order to determine the surface roughness parameters and 3D topography. The research showed that the carbon fiber reinforced plastics is on average one and a half times stiffer than that the glass fiber reinforced plastics. On the basis of the results obtained, it was found that the passive forces and cutting torques as well as the roughness parameters increase along with the length of the element. It was also shown that for the glass fiber reinforced plastics, above a certain length, the surface roughness clearly deteriorates.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Azmi A.I., Lin R.J.T. and Bhattacharyya D. Machinability study of glass fibre reinforced polymer composites during end milling. The International Journal of Advanced Manufacturing Technology, 2013, 64, 247-261.
  • 2. Batu T., Lemu G.H. and Sirhabizuh B. Study of the performance of natural fiber reinforced composites for wind turbine blade applications. Advances in Science and Technology Research Journal, 2020, 14(2), 67-75.
  • 3. Benardos, P.G. and Vosniakos G.C. Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 2003, 43, 833-844.
  • 4. Caggiano A. Machining of fibre reinforced plastic composite materials. Materials, 2018, 11, 442.
  • 5. Ciecieląg K., Kęcik K. and Zaleski K. Defects detection from time series of cutting force in composite milling process by recurrence analysis. Journal of Reinforced Plastics and Composites, 2020, 39, 23-24, 890-901.
  • 6. Ciecieląg K., Kęcik K. and Zaleski K. Effect of depth Surface defect in carbon fibre reinforced composite material on the selected recurrecene quantifications. Advances in Materials Science, 2020, 20, 2(64), 71-80
  • 7. Ciecieląg K., Kęcik K. and Zaleski K. Influence of defect diameter on its detection in milling process of composite material using recurrence plot technique. Composites Theory and Practice, 2017, 17(4), 194-199.
  • 8. Davim J.P. and Rei P. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology, 2005, 160, 160-167.
  • 9. Eriksen E. Influence from production parameters on the surface roughness of a machined short fibre reinforced thermoplastic. International Journal of Machine Tools and Manufacture, 1999, 39, 1611-1618.
  • 10. Ferreira, J.R, Coppini N.L. and Miranda G.W.A. Machining optimisation in carbon fibre reinforced composite materials. Journal of Materials Processing Technology, 1999, 92-93, 135-140.
  • 11. Ghidossi P., El Mansori M. and Pierron F. Edge machining effects on the failure of polymer matrix composite coupons. Composites: Part A, 2004, 35, 989-999.
  • 12. Ghorbani S., Rogov V.A., Carluccio A. and Belov P.S. The effect of composite boring bars on vibration in machining process. The International Journal of Advanced Manufacturing Technology, 2019, 105, 1157-1174.
  • 13. Hosokawa A., Hirose N., Ueda T. and Furumoto T. High quality machining of CFRP with high helix end mill. CIRP Annals, Manufacturing Technology, 2014, 63, 89-92.
  • 14. Kęcik K., Ciecieląg K. and Zaleski K. Damage detection of composite milling process by recurrence plots and quantifications analysis. The International Journal of Advanced Manufacturing Technology, 2017, 89(1), 133-144.
  • 15. Kłonica M. and Kuczmaszewski J. Modification of Ti6Al4V titanium alloy surface layer in the ozone atmosphere. Materials, 2019, 12(13), 1-14.
  • 16. Królczyk G.M., Maruda R.W., Królczyk J.B., Niesłony P., Wojciechowski Sz. and Legutko S. Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement, 2018, 121, 225-239.
  • 17. Kuruc M. Machining of composite materials by ultrasonic assistance. Advances in Science and Technology Research Journal, 2020, 14(2), 140-144.
  • 18.Legutko S., Żak K. and Kudlacek J. Characteristics of geometric structure of the surface after grinding. MATEC Web of Conferences, 2017, 94, 02007-1-02007-5.
  • 19. Lipski J. and Zaleski K. Optimisation of milling parameters using neural network. ITM Web of Conferences, 2017, 15, 1-6.
  • 20. Liu Y., Liu Z., Wang X. and Huang T. Experimental study on tool wear in ultrasonic vibration–assistedmilling of C/SiC composites. The International Journal of Advanced Manufacturing Technology, 2020, 107, 425-436.
  • 21. Matuszak J., Kłonica M. and Zagórski I. Measurements of forces and selected surface layer properties of AW-7075 aluminum alloy used in the aviation industry after abrasive machining. Materials, 2019, 12(22), 1-19.
  • 22. Nurhaniza M., Ariffin M.K.A.M., Mustapha F. and Baharudin B.T.H.T. Analyzing the effect of machining parameters setting to the surface roughness during end milling of CFRP-aluminium composite laminates. International Journal of Manufacturing Engineering, 2016, ID 4680380, 1-9.
  • 23. Palanikumar K., Karunamoorthy L. and Karthikeyan R. Assessment of factors influencing surface roughness on the machining of glass fiber reinforces polymer composites. Materials and Design, 2006, 27, 862–871.
  • 24. Sankara Narayana K., Suman K.N.S., Arun Vikram K. and Siddardha B. Optimization of surface roughness of fiber reinforced composite material in milling operation using Taguchi design method. International Journal of Mechanics Structural, 2011, 2(1), 31-42.
  • 25. Sorrentino L. and Turchetta S. Cutting forces in milling of carbon fibre reinforced plastics. International Journal of Manufacturing Engineering, 2014, ID 439634, 1-8.
  • 26. Teti R. Machining of composite materials, University of Naples Federico II, Italy, 2002.
  • 27. Vinayagamoorthy R. A review on the machining of fiber-reinforced polymeric laminates. Journal of Reinforced Plastics and Composites, 2018, 37(1), 49-59.
  • 28. Walter Rosen B. Stiffness of fibre composite materials. Composites, 1973, 4(1), 16-25
  • 29. Wei Y., An Q., Cai X., Chen M. and Ming W. Influence of fiber orientation on single-point cutting fracture behavior of carbon-fiber/epoxy prepreg sheets. Materials, 2015, 8, 6738-6751.
  • 30. Zagórski I., Kulisz M., Kłonica M. and Matuszak J. Trochoidal milling and neural networks simulation of magnesium alloys. Materials, 2019, 12(13), 1-25.
  • 31. Zemann R., Kain L. and Bleicher F. Vibration assisted machining of carbon fibre reinforced polymers. Procedia Engineering, 2014, 69, 536-543.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b7aa2c-fa9e-485d-b293-7fe8ffc3384d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.