Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This report presents the results of a numerical simulation of thermal hydraulics processes in a liquid metal cooled fast reactor core, combined with simple neutron population computing for an infinite pin cell lattice. Two types of coolant were studied: liquid sodium and liquid lead, with all requirements regarding safety conditions observed. Temperature distributions along the cooling channel and distributions in the radial direction were prepared, then criticality calculations were performed for MOX fuel using MCNP Monte Carlo code.
Czasopismo
Rocznik
Tom
Strony
16--25
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
- [1] D. T. P. T. A.E. Waltar, A. Reynolds, Fast Spectrum Reactors, Springer, 2011.
- [2] IAEA, International status and prospects for nuclear power 2012, Tech. rep., IAEA (2012).
- [3] IAEA, Uranium 2011: Resources, Production and Demand, A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, 2012.
- [4] SNETP, Esnii concept paper, Tech. rep., Sustainable Nuclear Energy Technology Platform, http://www.snetp.eu (2010).
- [5] World nuclear association reactor database. URL http://world-nuclear.org
- [6] Iaea power reactor information system. URL http://www.iaea.org/pris
- [7] G. I. I. Forum, A technology roadmap for generation iv nuclear energy systems, http://www.gen-4.org (2002).
- [8] K. Tucek, J. Carlsson, H. Wider, Comparison of sodium and lead-cooled fasr reactors reagarding physics aspects, svere safety and economical issues, Nuclear Engineering and Design (236) (2006) 1589–1598.
- [9] K. Tucek, Neutronic and burnup studies of acceleratordriven systems dedicated to nuclear waste transmutation, Ph.D. thesis, Royal Institute of Technology, Stockholm (2004).
- [10] V. Sobolev, Myrrha ads database: Part i. thermophysical properties of molten lead-bismuth eutectic, Tech. rep., SCK, CEN (2005).
- [11] P. Hejzlar, N. Todreas, E. Schwageraus, A. Nikiforova, R. Petroski, M. Driscoll, Cross-comparison of fast reactor concepts with various coolants, Nuclear Engineering and Design (239) (2009) 2672–2691.
- [12] Y. Sakamoto, J. C. Garnier, J. Rouault, C. Grandy, T. Fanning, R. Hill, Y. Chikazawa, S. Kotake, Selection of sodium coolant for fast reactors in the us, france and japan, Nuclear Engineering and Design 254 (2013) 194– 217.
- [13] R. Williams, R. Graves, D. McElroy, Thermal and electrical conductivities of an improved 9 Cr-1 Mo steel from 360 to 1000 K, International Journal of Thermophysics 5 (3) (1984) 301–313.
- [14] J. S. Cheon, C. Lee, B. O. Lee, J. Raison, T. Mizuno, F. Delage, J. Carmack, Sodium fast reactor evaluation: Core materials, Journal of Nuclear Materials (392) (2009) 324–330.
- [15] M. Kiełkiewicz, Teoria Reaktorów Jądrowych, Oficyna Wydawnicza Politechniki Warszawskiej, 1987.
- [16] J. Wallenius, Transmutation of nuclear waste, Roayal University of Technology, Stockholm, http://neutron.kth.se/courses/transmutation/TextBook.shtml, 2010.
- [17] T. Goorley, Criticality calculations with MCNP5: A primer, Tech. Rep. LA-UR-04-0294, Los Alamos National Laboratories X-5 (2004).
- [18] A.Waltar, A. Reynolds, Fast Breeder Reactors, Pergamon Press, 1981.
- [19] P. Mazgaj, Conceptual neutronic design of a 300 MWth lead fast reactor core, Master’s thesis, Warsaw University of Technology (2010).
- [20] E. Lewis, Fundamentals of Nuclear Reactor Physics, Academic Press, 2008.
- [21] H. Anglart, Applied Reactor Technology, Institute of Heat Engineering, 2013.
- [22] Y. W. Wu, X. Li, X. Yu, S. Z. Qiu, F. Su, W. Tian, Subchannel thermal-hydraulic analysis of the fuel assembly for liquid sodium cooled fast reactor, Progress in Nuclear Energy 69 (2013) 65–78.
- [23] K. D. Hamman, R. A. Berry, A cfd simulation process for fast reactor fuel assemlies, Nuclear Engineering and Design 240 (2010) 2304–2312.
- [24] J. Carbajo, G. Yoder, S. Popov, V. Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, Nucl. Mater. 299 (299) (2001) 181–198.
- [25] V. Sobolev, E. Malambu, H. A. Abderrahim, Design of a fuel element for a lead-cooled fast reactor, Journal of Nuclear Materials (385) (2009) 392–399.
- [26] L. Leibowitz, R. A. Blomquist, Thermal conductivity and thermal expansion of stainless steels d9 and ht9, International Journal of Thermophysics 9 (5) (1988) 873.
- [27] J. S. Cheon, C. Lee, B. O. Lee, J. P. Raison, T. Mizuno, F. Delage, J. Carmack, Sodium fast reactor evaluation: Core materials, Journal of Nuclear Materials 392 (2009) 324–330.
- [28] IAEA, Iaea fast reactor database (2012).
- [29] K. Mikityuk, Heat transfer to liquid metal: Review of data and correlations for tube bundles, Nuclear Engineering and Design 239 (2009) 680–687.
- [30] W. Pfrang, D. Struwe, Assessment of Correlations for Heat Transfer to the Coolant for Heavy Liquid Metal Cooled Core Designs, Forschungszentrum Karlsruhe Gmbh, 2007.
- [31] N. Todreas, M. S. Kazimi, Nuclear Systems: Vol. I, Thermal Hydraulic Fundamentals, Taylor & Francis, 1990.
- [32] H. Anglart, Thermal-Hydraulics in Nuclear Systems, Institute of Heat Engineering, 2013.
- [33] S. Levy, Two-Phase Flow in Complex Systems, John Wiley&Sons, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b2f6ec-9112-4004-b301-3b03a312645f