PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Corrosion resistance characteristics of a Ti-6Al-4V ELI alloy fabricated by electron beam melting after the applied post-process treatment methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Post-process modifications in the form of Hot Isostatic Pressing or surface treatment methods such as sandblasting ormachining have been widely used in the case of improving the quality of elements manufactured with the use of EBM (Electron Beam Melting). The corrosion resistance of titanium alloys for medical applications is a key and critical aspect for the use of personalized components as implants, especially when investigating the issue of additive manufacturing. This paper presents the results of research on the influence of HIP processing on the functional properties of the material produced with the use of EBM, considering the aspect of reconstructive medicine. Both the influence of surface modification and the influence of post-process treatment on microstructural, mechanical, and corrosion properties were investigated. A wide range of research has been carried out using scanning and transmission electron microscopy methods, in combination with three-point static bending tests and performing corrosion tests using potentiodynamic polarization and electrochemical spectroscopic impedance (EIS) in Hank‘s solution. The results showed that HIP treatment has a positive effect on the corrosive properties of the material in terms of increased corrosion resistance compared to materials not subjected to this type of post-process treatment. This fact is also related to the change of the alloy microstructure and the change of mechanical properties towards increased plasticity. In the case of the production of personalized implants with the use of EBM, it is worth considering the benefits of the HIP.
Twórcy
  • Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland
  • Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Center for Advanced Manufacturing Technologies (CAMT), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, Wroclaw, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng 2012;2012:1–10. https://doi.org/10.5402/2012/208760.
  • [2] Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 2019;164:107552. https://doi.org/10.1016/j.matdes.2018.107552.
  • [3] Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 2016;34(3):369–85. https://doi.org/10.1002/jor.23075.
  • [4] Murr LE, Gaytan SM. Electron Beam Melting. Compr Mater Process, vol. 10, Elsevier Ltd; 2014, p. 135–61. https://doi.org/10.1016/B978-0-08-096532-1.01004-9.
  • [5] Galati M, Minetola P, Rizza G. Surface roughness characterisation and analysis of the electron beam melting (EBM) process. Materials (Basel) 2019;12:2211. https://doi.org/10.3390/ma12132211.
  • [6] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 2008;1(1):30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001.
  • [7] Hao Y-L, Li S-J, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met 2016;35(9):661–71. https://doi.org/10.1007/s12598-016-0793-5.
  • [8] Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016;84:262–75. https://doi.org/10.1016/j.biomaterials.2016.01.046.
  • [9] Sivakumar B, Kumar S, Narayanan TSNS. Comparison of fretting corrosion behaviour of Ti-6Al-4V alloy and CP-Ti in Ringer’s solution. Tribol - Mater Surfaces Interfaces 2011;5(4):158–64. https://doi.org/10.1179/1751584X11Y.0000000020.
  • [10] Alves VA, Reis RQ, Santos ICB, Souza DG, de F. Gonçalves T, Pereira-da-Silva MA, et al. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25 °C and 37 °C. Corros Sci 2009;51(10):2473–82. https://doi.org/10.1016/j.corsci.2009.06.035.
  • [11] Thakral GK, Thakral R, Sharma N, Seth J, Vashisht P. Nanosurface-the future of implants. J Clin Diagnostic Res 2014;8:7–10. https://doi.org/10.7860/JCDR/2014/8764.4355.
  • [12] Tadeusiewicz R. Applications of neural networks in biotechnology and biomaterials. Biominer. Biotechnol. Biomater. Med., Cracow: Polish Academy of Sciences 2000.
  • [13] Hoppe V, Szymczyk-Ziółkowska P, Rusińska M, Dybała B, Poradowski D, Janeczek M. Assessment of mechanical, chemical, and biological properties of Ti-Nb-Zr alloy for medical applications. Materials (Basel) 2021;14:1–18. https://doi.org/10.3390/ma14010126.
  • [14] Schuler M, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: A cell morphology study. Biomaterials 2006;27(21):4003–15. https://doi.org/10.1016/j.biomaterials.2006.03.009.
  • [15] Ponader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A, Körner C, et al. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J Biomed Mater Res Part A 2008;84A(4):1111–9. https://doi.org/10.1002/jbm.a.31540.
  • [16] Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Hancock REW, Wang R. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 2013;34(24):5969–77. https://doi.org/10.1016/j.biomaterials.2013.04.036.
  • [17] Balamurugan A, Rajeswari S, Balossier G, Rebelo AHS, Ferreira JMF. Corrosion aspects of metallic implants - An overview. Mater Corros 2008;59(11):855–69. https://doi.org/10.1002/maco.200804173.
  • [18] Szymczyk P, Hoppe V, Ziółkowski G, Smolnicki M, Madeja M. The effect of geometry on mechanical properties of Ti6Al4V ELI scaffolds manufactured using additive manufacturing technology. Arch Civ Mech Eng 2020;20(1). https://doi.org/10.1007/s43452-020-0011-y.
  • [19] Vayssette B, Saintier N, Brugger C, Elmay M, Pessard E. Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life. Procedia Eng 2018;213:89–97. https://doi.org/10.1016/j.proeng.2018.02.010.
  • [20] Chan KS, Koike M, Mason RL, Okabe T. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants. Metall. Mater. Trans. A, vol. 44, Springer US; 2013, p. 1010–22. https://doi.org/10.1007/s11661-012-1470-4.
  • [21] Szymczyk-Ziółkowska P, Hoppe V, Rusińska M, Gąsiorek J, Ziółkowski G, Dydak K, et al. The impact of EBM-manufactured Ti6Al4V ELI alloy surface modifications on cytotoxicity toward eukaryotic cells and microbial biofilm formation. Materials (Basel) 2020;13(12):2822. https://doi.org/10.3390/ma13122822.
  • [22] Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23(7):844–54. https://doi.org/10.1016/j.dental.2006.06.025.
  • [23] Quirynen M, Bollen CML. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man: A review of the literature. J Clin Periodontol 1995;22:1–14. https://doi.org/10.1111/j.1600-051X.1995.tb01765.x.
  • [24] Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 2004;15(9):935–49. https://doi.org/10.1023/B: JMSM.0000042679.28493.7f.
  • [25] Leinenbach C, Eifler D. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials 2006;27(8):1200–8. https://doi.org/10.1016/j.biomaterials.2005.08.012.
  • [26] Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83(7):529–33. https://doi.org/10.1177/154405910408300704.
  • [27] Yuda AW, Supriadi S, Saragih AS. Surface modification of Tialloy based bone implant by sandblasting. AIP Conf Proc 2019;2193. https://doi.org/10.1063/1.5139335.
  • [28] Sader MS, Balduino A, De Almeida SG, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res 2005;16:667–75. https://doi.org/10.1111/j.1600-0501.2005.01135.x.
  • [29] Jung SC, Lee K, Kim BH. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface. Thin Solid Films 2012;521:150–4. https://doi.org/10.1016/j.tsf.2011.12.089.
  • [30] Saldaña L, Barranco V, González-Carrasco JL, Rodríguez M, Munuera L, Vilaboa N. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. J Biomed Mater Res - Part A 2007;81A(2):334–46. https://doi.org/10.1002/jbm.a.30994.
  • [31] Kurzynowski T, Madeja M, Dziedzic R, Kobiela K. The effect of EBM process parameters on porosity and microstructure of Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Scanning 2019;2019:1–12. https://doi.org/10.1155/2019/2903920.
  • [32] Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Nandwana P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng A 2017;685:417–28. https://doi.org/10.1016/j.msea.2017.01.019.
  • [33] Li X, Wang C-T, Zhang W-G, Li Y-C. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Proc Inst Mech Eng Part H J Eng Med 2009;223 (2):173–8. https://doi.org/10.1243/09544119JEIM466.
  • [34] Liu P-C, Yang Y-j, Liu R, Shu H-x, Gong J-P, Yang Y, et al. A study on the mechanical characteristics of the EBM-printed Ti-6Al-4V LCP plates in vitro. J Orthop Surg Res 2014;9(1). https://doi.org/10.1186/s13018-014-0106-3.
  • [35] Hrabe N, Gnäupel-Herold thomasgnaeupel-herold T, Quinn timothyquinn T. Fatigue Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Via Electron Beam Melting (EBM): Effects of Internal Defects and Residual Stress. n.d.
  • [36] Hosseini AM, Masood SH, Fraser D, Jahedi M. Mechanical properties investigation of HIP and As-built EBM parts. Adv Mater Res 2012;576:216–9. https://doi.org/10.4028/www.scientific.net/AMR.576.216.
  • [37] Chastand V, Quaegebeur P, Maia W, Charkaluk E. Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Mater Charact 2018;143:76–81. https://doi.org/10.1016/j.matchar.2018.03.028.
  • [38] Dallago M, Fontanari V, Torresani E, Leoni M, Pederzolli C, Potrich C, et al. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting. J Mech Behav Biomed Mater 2018;78:381–94. https://doi.org/10.1016/j.jmbbm.2017.11.044.
  • [39] ASTM F136. Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401) n.d.
  • [40] Klinger M, Jäger A. Crystallographic Tool Box (CrysTBox): Automated tools for transmission electron microscopists and crystallographers. J Appl Crystallogr 2015;48:2012–8. https://doi.org/10.1107/S1600576715017252.
  • [41] Vander VG. Metallographic preparation of titanium and its alloys. Buehler Tech-Notes 1999;3:1–5.
  • [42] Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 2013;22(12):3872–83. https://doi.org/10.1007/s11665-013-0658-0.
  • [43] Kudiiarov VN, Syrtanov MS, Bordulev YS, Babikhina MN, Lider AM, Gubin VE, et al. The hydrogen sorption and desorption behavior in spherical powder of pure titanium used for additive manufacturing. Int J Hydrogen Energy 2017;42(22):15283–9. https://doi.org/10.1016/j.ijhydene.2017.04.248.
  • [44] Pushilina N, Panin A, Syrtanov M, Kashkarov E, Kudiiarov V, Perevalova O, et al. Hydrogen-induced phase transformation and microstructure evolution for Ti-6Al-4V parts produced by electron beam melting. Metals (Basel) 2018;8(5):301. https://doi.org/10.3390/met8050301.
  • [45] Pushilina N, Syrtanov M, Kashkarov E, Murashkina T, Kudiiarov V, Laptev R, et al. Influence of manufacturing parameters on microstructure and hydrogen sorption behavior of electron beam melted titanium Ti-6Al-4V alloy. Materials (Basel) 2018;11. https://doi.org/10.3390/ma11050763.
  • [46] Metalnikov P, Eliezer D, Ben-Hamu G, Tal-Gutelmacher E, Gelbstein Y, Munteanu C. Hydrogen embrittlement of electron beam melted Ti–6Al–4V. J Mater Res Technol 2020;9(6):16126–34. https://doi.org/10.1016/j.jmrt.2020.11.073.
  • [47] Nicolas-Silvente AI, Velasco-Ortega E, Ortiz-Garcia I, Monsalve-Guil L, Gil J, Jimenez-Guerra A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel) 2020;13:1–13. https://doi.org/10.3390/ma13020314.
  • [48] Ferraris S, Spriano S, Pan G, Venturello A, Bianchi CL, Chiesa R, et al. Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part I, inorganic modification. J Mater Sci Mater Med 2011;22(3):533–45. https://doi.org/10.1007/s10856-011-4246-2.
  • [49] Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Devices 2010;7(2):241–56. https://doi.org/10.1586/erd.09.74.
  • [50] Leach R, editor. Characterisation of Areal Surface Texture. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.
  • [51] Bai Y, Gai X, Li S, Zhang L-C, Liu Y, Hao Y, et al. Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros Sci 2017;123:289–96. https://doi.org/10.1016/j.corsci.2017.05.003.
  • [52] Vlcak P, Fojt J, Drahokoupil J, Brezina V, Sepitka J, Horazdovsky T, et al. Influence of surface pre-treatment with mechanical polishing, chemical, electrochemical and ion sputter etching on the surface properties, corrosion resistance and MG-63 cell colonization of commercially pure titanium. Mater Sci Eng C 2020;115:111065. https://doi.org/10.1016/j.msec.2020.111065.
  • [53] Paknahad H, Shahriari Nogorani F. Effects of substrate roughness on the surface morphology and corrosion properties of Fe- and Ni-aluminide coatings on martensitic stainless steel. Surf Coatings Technol 2020;392:125761. https://doi.org/10.1016/j.surfcoat.2020.125761.
  • [54] Salahinejad E, Hadianfard MJ, Vashaee D, Tayebi L. Influence of annealing temperature on the structural and anticorrosion characteristics of sol-gel derived, spin-coated thin films. Ceram Int 2014;40(2):2885–90. https://doi.org/10.1016/j.ceramint.2013.10.023.
  • [55] Honess C. Importance of surface finish in the design of stainless steel. Stainl Steel Ind 2006:14–5.
  • [56] Qin P, Chen Y, Liu YJ, Zhang J, Chen LY, Li Y, et al. Resemblance in corrosion behavior of selective laser melted and traditional monolithic b Ti-24Nb-4Zr-8Sn alloy. ACS Biomater Sci Eng 2019;5(2):1141–9. https://doi.org/10.1021/acsbiomaterials.8b01341.
  • [57] Stern M, Geaby AL. Electrochemical polarization. J Electrochem Soc 1957;104(1):56. https://doi.org/10.1149/1.2428496.
  • [58] Yang J, Yang H, Yu H, Wang Z, Zeng X. Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall Mater Trans A Phys Metall Mater Sci 2017;48(7):3583–93. https://doi.org/10.1007/s11661-017-4087-9.
  • [59] Gai X, Bai Y, Li S, Hou W, Hao Y, Zhang X, et al. In-situ monitoring of the electrochemical corrosion behavior in fluoride environment of cellular structured Ti6Al4V alloy fabricated by electron beam melting. Corros Sci 2021;181:109258. https://doi.org/10.1016/j.corsci.2021.109258.
  • [60] Zhou L, Deng H, Chen L, Qiu W, Wei Y, Peng H, et al. Morphological effects on the electrochemical dissolution behavior of forged and additive manufactured Ti-6Al-4Valloys in runway deicing fluid. Surf Coatings Technol 2021;414:127096. https://doi.org/10.1016/j.surfcoat.2021.127096.
  • [61] Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L, Zhou A. Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids. Electrochim Acta 2008;53(15):5022–32. https://doi.org/10.1016/j.electacta.2008.01.086.
  • [62] Leon A, Levy GK, Ron T, Shirizly A, Aghion E. The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4 V produced by an electron-beam melting additive manufacturing process. Addit Manuf 2020;33:101039. https://doi.org/10.1016/j.addma.2020.101039.
  • [63] Bodunrin MO, Chown LH, Van Der Merwe JW, Alaneme KK, Oganbule C, Klenam DEP, et al. Corrosion behavior of titanium alloys in acidic and saline media: Role of alloy design, passivation integrity, and electrolyte modification. Corros Rev 2020;38:25–47. https://doi.org/10.1515/corrrev-2019-0029.
  • [64] Ouassir J, Bennis H, Benqlilou H, Galai M, Hassani Y, Touhami ME, et al. EIS study on erosion–corrosion behavior of BA35 and BA22 brasses in drinking water at various impingement angles. Colloids Surfaces A Physicochem Eng Asp 2020;586:124151. https://doi.org/10.1016/j.colsurfa.2019.124151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4b20551-4424-45c4-87bd-5add63fcf9d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.