PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of materials design in maintenance engineering in the context of industry 4.0 idea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the issues of designing the maintenance of materials and products in accordance with the idea of Industry 4.0. The author's views on the need for augmentation of the Industry 4.0 model were also presented, as well as the author's original concept that hybrid activities in predictive maintenance and condition-based maintenance should be preceded by designing material, maintenance & manufacturing 3MD at the stage of the product's material designing and technological designing. The 3MD approach significantly reduces the frequency of assumed actions, procedures and resources necessary to remain the condition of this product for the longest possible time, enabling it to perform the designed working functions. Examples of own advanced research on several selected, newly developed materials, used in very different areas of application, confirmed the validity of the scientific hypothesis and the relationship between the studied phenomena and structural effects and the working functions of products and their maintenance and indicated that material design is one of the most important elements guaranteeing progress production at the stage of Industry 4.0 of the industrial revolution. Design/methodology/approach: The author's considerations are based on an extensive literature study and the results of the author's previous study and empirical work. Each of the examples given required the use of a full set of research methods available to modern material engineering, including HRTEM high-resolution transmission electron microscopy. Findings: The most interesting intellectual achievements contained in the paper include presentations of the author's original concepts regarding the augmentation of the Industry 4.0 model, which has been distributed so far, which not only requires augmentation but is actually only one of the 4 elements of the technology platform of the extended holistic model of current industrial development, concerning cyber-IT production aided system. The author also presents his own concept for designing material, maintenance and manufacturing 3MD already at the stage of material and technological design of the product, eliminating many problems related to product maintenance, even before they are manufactured and put into exploitation. Detailed results of detailed structural researches of several selected avant-garde engineering materials and discussion of structural changes that accompanying their manufacturing and/or processing are also included. Originality/value: The originality of the paper is associated with the novelty of the approach to analysing maintenance problems of materials and products, taking into account the requirements of the contemporary stage of Industry 4.0 development. The value of the paper is mainly associated with the presentation of original issues referred to as findings, including the concept of augmentation of the Industry 4.0 model and the introduction and experimental confirmation of the idea by designing material, maintenance and manufacturing 3MD.
Rocznik
Strony
12--49
Opis fizyczny
Bibliogr. 165 poz., rys., tab., wykr.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
Bibliografia
  • [1] R.K. Mobley, An introduction to predictive maintenance, Second Edition, Buttherworth-Heinemann, Woburn, USA, 2002.
  • [2] A.K.C. Jardine, A.H.C. Tsang, Maintenance replacement and reliability, Second Edition, CRC Press, Boca Raton, USA, 2006.
  • [3] R. Barlow, F. Proschan, Mathematical theory of reliability, Society for Industrial and Applied Mathematics, New York, 1996, DOI: http://dx.doi.org/10.1137/1.9781611971194.
  • [4] A.S.B. Tam, W.M. Chan, J.W.H. Price, Maintenance scheduling to support the operation of manufacturing and production assets, International Journal of Advanced Manufacturing Technology 34 (2007) 399, DOI: 10.1007/s00170-006-0593-4.
  • [5] L. Swanson, Linking maintenance strategies to performance, International Journal of Production Economics 709/3 (2001) 237-244, DOI: 10.1016/S0925-5273(00)00067-0.
  • [6] S. Ding, S. Kamaruddin, Maintenance policy optimization-literature review and directions, International Journal of Advanced Manufacturing Technology 76 (2015) 1263-1283, DOI: 10.1007/s00170-014-6341-2.
  • [7] R. Kumar, S. Singh Panesar, T. Markeset, Development of technical integrity management services – a concept, Journal of Quality in Maintenance Engineering 15/3 (2009) 271-284, DOI: 10.1108/13552510910983215.
  • [8] G. Niu, B-S. Yang, M. Pecht, Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance, Reliability Engineering and System Safety 95 (2010) 786-796, DOI: 10.1016/j.ress.2010.02.016.
  • [9] C.N. Madu, Competing through maintenance strategies, International Journal of Quality and Reliability Management 17/9 (2000) 937-948, DOI: 10.1108/02656710010378752.
  • [10] T. Xia, L. Xi, J. Lee, X. Zhou, Optimal CBPM policy considering maintenance effects and environmental condition, International Journal of Advanced Manufacturing Technology 56 (2011) 1181, DOI: 10.1007/s00170-011-3235-4.
  • [11] D.D. Sheu, J.Y. Kuo, A model for preventive maintenance operations and forecasting, Journal of Intelligent Manufacturing 17 (2006) 441-451, DOI: 10.1007/s10845-005-0017-6.
  • [12] X. Zhou, L. Xi, J. Lee, Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation, Reliability Engineering and System Safety 92 (2007) 530-534, DOI: 10.1016/j.ress.2006.01.006.
  • [13] N.C. Caballé, I.T. Castro, C.J. Pérez, J.M. LanzaGutiérrez, A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes, Reliability Engineering & System Safety 134 (2015) 98-109, DOI: http://dx.doi.org/10.1016/j.ress.2014.09.024.
  • [14] K.T. Huynh, I.T. Castro, A. Barros, C. Bérenguer, Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks, European Journal of Operational Research 218 (2012) 140-151, DOI: 10.1016/j.ejor.2011.10.025.
  • [15] J.Y.J. Lam, D. Banjevic, A myopic policy for optimal inspection scheduling for condition based maintenance, Reliability Engineering and System Safety 144 (2015) 1-11, DOI: 10.1016/j.ress.2015.06.009.
  • [16] X. Zhao, M. Fouladirad, C. Berenguer, L. Bordes, Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates, Reliability Engineering and System Safety 95 (2010) 921-934, DOI: 10.1016/j.ress.2010.04.005.
  • [17] Z. Tian, H. Liao, Condition based maintenance optimization for multi-component systems using proportional hazards model, Reliability Engineering and System Safety 96 (2011) 581-589, DOI: 10.1016/j.ress.2010.12.023.
  • [18] Z. Tian, T. Jin, B. Wu, F. Ding, Condition based maintenance optimization for wind power generation systems under continuous monitoring, Renewable Energy 36/5 (2011) 1502-1509, DOI: 10.1016/ j.renene.2010.10.028.
  • [19] P.D. Van, A. Barros, C. Bérenguer, K. Bouvard, F. Brissaud, Dynamic grouping maintenance with time limited opportunities, Reliability Engineering and System Safety 120 (2013) 51-59, DOI: 10.1016/j.ress.2013.03.016.
  • [20] H.P. Hong, W. Zhou, S. Zhang, W. Ye, Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components, Reliability Engineering and System Safety 121 (2014) 276-288, DOI: 10.1016/j.ress.2013.09.004.
  • [21] L.A. Dobrzański, Significance of materials science for the future development of societies, Journal of Materials Processing Technology 175/1-3 (2006) 133148, DOI: 10.1016/j.jmatprotec.2005.04.003.
  • [22] L.A. Dobrzański, Engineering materials and material design. Fundamentals of materials science and metallography, Second Edition changed and suplemented, WNT, Warsaw, 2006 (in Polish).
  • [23] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Why are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0 Stage of the Industrial Revolution?, Materials Performance and Characterization 8/3 (2019) 337-370, DOI: 910.1520/MPC20190145.
  • [24] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Applications of Laser Processing of Materials in Surface Engineering in the Industry 4.0 Stage of the Industrial Revolution, Materials Performance and Characterization 8/6 (2019) 1091-1129, DOI: 10.1520/ MPC20190203.
  • [25] L.A. Dobrzański, Effect of heat and surface treatment on the structure and properties of the Mg-Al-Zn-Mn casting alloys, in: L.A. Dobrzański, G.E. Totten, M. Bamberger (Eds.), Magnesium and its alloys: technology and applications, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2020 (in print).
  • [26] L.A. Dobrzański, The role of material engineering in the Industry 4.0 stage of the industrial revolution, Considerations on the occasion of the seminar of the Polish Materials Science Society'2019, Jachranka near Warsaw, 12.05.2019, Available at: http://ptmmaterials.pl/media/dokumentydopobrania/PTM%20wyst%C4%85pienie%20LAD%2013-05-2019%20kompr.pdf, Access: 04.08.2019 (in Polish).
  • [27] L.A. Dobrzański, The importance of material engineering in the Industry 4.0 stage of the industrial revolution, Invited lecture in Institute of Fundamental Technological Problems PAN, Warsaw, Poland, 27.05.2019 (in Polish).
  • [28] L.A. Dobrzański, Stage 4.0 of the technological revolution in the context of the development of engineering materials, Invited Lecture in Lviv Polytechnic National University, Lviv, Ukraine, 3.06.2019.
  • [29] L.A. Dobrzański, Structural phenomena accompanying the production of composite and nanocomposite materials using selected technologies, Invited Speaker Lecture, in the XXII AMT Conference, 9th-12th June 2019, Bukowina Tatrzanska, Poland.
  • [30] L.A. Dobrzański, L.B. Dobrzański, Approach to the design and manufacturing of prosthetic dental restorations according to the rules of the Industry 4.0, Processes MDPI, 2020 (prepared for printing).
  • [31] H. Kagermann, W. Wahlster, J. Helbig, Recommendations for Implementing the Strategic Initiative Industry 4.0, Final Report of the Industry 4.0 Working Group, Federal Ministry of Education and Research, Bonn, Germany, 2013.
  • [32] H. Kagermann, Chancen von Industrie 4.0 Nutzen, in: Industrie 4.0 in Produktion, Automatisierung und Logistik, Springer Fachmedien Wiesbaden, Wiesbaden, Germany, 2014, 603-614.
  • [33] M. Hermann, T. Pentek, B. Otto, Design Principles for Industry 4.0 Scenarios: A Literature Review, Dortmund, Germany: Technische Universität Dortmund, 2015.
  • [34] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, Boston Consulting Group, Boston, 2015.
  • [35] Resolution adopted by the General Assembly on September 25, 2015, A/70/L.1 Transforming our world: Agenda for sustainable development 2030, Available at: http://www.unic.un.org.pl/files/164/Agenda%202030_pl_2016_ostateczna.pdf (in Polish).
  • [36] R. Josea, S. Ramakrishna, Materials 4.0: Materials big data enabled materials discovery, Applied Materials Today 10 (2018) 127-132, DOI: 10.1016/j.apmt.2017.12.015.
  • [37] Keidanren, Society 5.0: Co-Creating the Future (Excerpt) (Tokyo: Keidanren, 2018).
  • [38] Keidanren, Toward Realization of the New Economy and Society (Outline) (Tokyo: Keidanren, 2016).
  • [39] Keidanren, Japan’s Initiatives - Society 5.0, Keidanren, Tokyo.
  • [40] Y. Harayama, Society 5.0: Aiming for a New HumanCentered Society, Hitachi Review 66/6 (2017): 8-13.
  • [41] Government of Japan Cabinet Office, Society 5.0, Cabinet Office, 2019, Available at: https://www8.cao.go.jp/cstp/society5_0/index.html.
  • [42] M. Fukuyama, Society 5.0: Aiming for a New HumanCentered Society, Japan SPOTLIGHT July/August (2018) 47-50.
  • [43] P. Gerbert, M. Lorenz, M. Rüßmann, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, 2015, Available at: https://www.bcg.com/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries.aspx.
  • [44] Boston Consulting Group, Embracing Industry 4.0 and Rediscovering Growth, BCG, 2019, Available at: https://www.bcg.com/pl-pl/capabilities/operations/embracing-industry-4.0-rediscovering-growth.aspx.
  • [45] R. Adell, B. Ericksson, U. Kekholm, P.-I. Branemark, T. Jemt, Long-term follow-up study of osseointegrated implants in the treatment of totally endentulous jaws, International Journal of Oral & Maxillofacial Implants 5/4 (1990) 347-359.
  • [46] A.N. Cranin, J.E. Lemons, 7.8. Dental implantation, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen J.E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine, Second Edition, Elsevier Academic Press, Amsterdam, 1997, 555-573.
  • [47] P.J. Henry, Osseointegration in dentistry, Proceedings of Interdisciplinary Conference on Osseointegration from molecule to man, Goteborg, Sweden, 1999, 2-12.
  • [48] P.-I. Brånemark, Osseointegration and its experimental studies, Journal of Prosthetic Dentistry 50 (1983) 399-410.
  • [49] P.-I. Brånemark, B.L. Rydevik, R. Skalak (Eds.), Osseointegration in skeletal reconstruction and joint replacement, Quintessence Publishing Co., Carol Stream, IL, 1997.
  • [50] R. Brånemark, P.-I. Brånemark, B. Rydevik, R.R. Myers, Osseointegration in skeletal reconstruction and rehabilitation: A review, Journal of Rehabilitation Research and Development 38/2 (2001) 175-181.
  • [51] R. Skalak, Overview of previous development and biomechanics of osseointegration, in: B. Rydevik, P.-I. Brånemark, R. Skalak (Eds.), International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, The Institute for Applied Biotechnology, Göteborg, Sweden, 1991.
  • [52] P. Worthington, Current status of osseointegration, in: B. Rydevik, P.-I. Brånemark, R. Skalak (Eds.), International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement, The Institute for Applied Biotechnology, Göteborg, Sweden, 1991, 17-20.
  • [53] R. Skalak, Biomechanics of osseointegration, in: P.-I. Brånemark, B.L. Rydevik, R. Skalak (Eds.), Osseointegration in skeletal reconstruction and joint replacement, Quintessence Publishing Co., Carol Stream, IL, 1997, 45-56.
  • [54] L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials 23 (2007) 844-854.
  • [55] T. Albrektsson, T. Jansson, U. Lekholm, Osseointegrated dental implants, Dental Clinics of North America 30/1 (1986) 151-174.
  • [56] A.D. Pye, D.E.A. Lockhart, M.P. Dawson, C.A. Murray, A.J. Smith, A review of dental implants and infection, Journal of Hospital Infection 72 (2009) 104110, DOI: 10.1016/j.jhin.2009.02.010.
  • [57] L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, InTech, Rijeka, Croatia, 2018.
  • [58] L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017.
  • [59] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweł, Porous selective laser melted Ti and Ti6Al4V materials for medical applications, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 161-181, DOI: 10.5772/65375.
  • [60] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication technologies of the sintered materials including materials for medical and dental application, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 17-52, DOI: 10.5772/65376.
  • [61] L.B. Dobrzański, Mechanical properties comparison of the engineering materials produced by additive and loss technologies for dental prosthetic restorations, in: L.A. Dobrzański (Ed.), Biomaterials for regenerative medicine, InTech, Rijeka, Croatia, 2017, 633-635, DOI: 10.5772/intechopen.70493.
  • [62] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, M. Szindler, Structure and Properties of the Skeleton Microporous Materials with Coatings Inside the Pores for Medical and Dental Applications, in: M. Muruganant, C. Ali, B. Raj (Eds.), Frontiers in Materials Processing, Applications, Research and Technology, Springer Singapore, 2018, 297-320, DOI: 10.1007/978-981-104819-7_26.
  • [63] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [64] L.A. Dobrzański, The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry, Archives of Materials Science and Engineering 80/2 (2016) 64-85, DOI: 10.5604/18972764.1229638.
  • [65] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry, Archives of Materials Science and Engineering 92/2 (2018) 53-85, DOI: 10.5604/01.3001.0012.6585.
  • [66] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biological-engineering materials for applications in medical and dental implant-scaffolds, Archives of Materials Science and Engineering 91/2 (2018) 56-85, DOI: 10.5604/01.3001.0012.5490.
  • [67] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous andsolidmetallic materials for medical and dental application, Open Access Library Annal VII (1) 2017, 1-580 (in Polish).
  • [68] K.A. Munzer, K.T. Holdermann, R.E. Schlosser, S. Sterk, Thin monocrystalline silicon solar cells, IEEE Transactions on Electron Devices 46/10 (1999) 2055-2061, DOI: 10.1109/16.791996.
  • [69] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, D. Que, Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline, Renewable Energy 29 (2004) 2101-2107, DOI: 10.1016/j.renene.2004.03.003.
  • [70] P. Campbell, M.A. Green, High performance light trapping textures for monocrystalline silicon solar cells, Solar Energy Materials & Solar Cells 65 (2001) 369-375.
  • [71] W. Deng, F. Ye, Z. Xiong, D. Chen, W. Guo, Y. Chen, Y. Yang, P.P. Altermatta, Z. Feng, P.J. Verlinden, Development of high-efficiency industrial p-type multi-crystalline PERC solar cells with efficiency greater than 21%, Energy Procedia 92 (2016) 721-729, DOI: 10.1016/j.egypro.2016.07.050.
  • [72] J Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M.C. Schubert, M. Hermle, A.W. Bett, S.W. Glunz, High-Efficiency n-Type HP mc Silicon Solar Cells, IEEE Journal of Photovoltaics 7/5 (2017) 1171-1175, DOI: 10.1109/JPHOTOV.2017.2714139.
  • [73] Y.M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, C.W. Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Progress in Photovoltaics 23/3 (2015) 340-351, DOI: 10.1002/pip.2437.
  • [74] S. Castellanos, K.E. Ekstrøm, A. Autruffe, M.A. Jensen, A.E. Morishige, J. Hofstetter, P. Yen, B. Lai, G. Stokkan, C. del Cañizo, T. Buonassisi, High-performance and traditional multicrystalline silicon: Comparing gettering responses and lifetime-limiting defects, IEEE Journal of Photovoltaics 6/3 (2016) 632-640, DOI: 10.1109/JPHOTOV.2016.2540246.
  • [75] F. Schindler, B. Michl, P. Krenckel, S. Riepe, J. Benick, R. Müller, A. Richter, S.W. Glunza, M.C. Schubert, Multicrystalline silicon for solar cell efficiencies exceeding 22%, Solar Energy Materials and Solar Cells 171 (2017) 180-186, DOI: 10.1016/j.solmat.2017.06.005.
  • [76] O. Schultz, S.W. Glunz, G.P. Willeke, Multicrystalline silicon solar cells exceeding 20% efficiency, Progress in Photovoltaics 12/7 (2004) 553-558, DOI: 10.1002/pip.583.
  • [77] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, Boston, Cambridge, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015, 3-32.
  • [78] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 26772717.
  • [79] A. Drygała, L.A. Dobrzański, M. Szindler, M.M. Szindler, M. Prokopiuk vel Prokopowicz, E. Jonda, Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon, International Journal of Hydrogen Energy 41/18 (2016) 7563-7567, DOI: 10.1016/j.ijhydene.2015.12.180.
  • [80] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Central European Journal of Physics 12/9 (2014) 666-670, DOI: 10.2478/s11534-014-0500-9.
  • [81] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multicrystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201/1-3 (2008) 291-296, DOI: 10.1016/j.jmatprotec.2007.11.278.
  • [82] L.A. Dobrzański, A. Drygała, Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Materials Processing Technology 191/1-3 (2007) 228-231, DOI: 10.1016/j.jmatprotec.2007.03.009.
  • [83] L.A. Dobrzański, A. Drygała, Laser Application in Photovoltaics for Surface Texturizationof Silicon and Front Electrode Deposition, Materials Performance and Characterization 8/6 (2019) 1136-1146, DOI: 10.1520/MPC20190061.
  • [84] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43/3 (2003) 438-446, DOI: 10.2355/isijinternational.43.438.
  • [85] O. Graessel, L. Krueger, G. Frommeyer. W. Meyer, High strength Fe±Mn±(Al, Si) TRIP/TWIP steels development and properties and application, International Journal of Plasticity 16/10-11 (2000) 1391-1409, DOI: 10.1016/S0749-6419(00)00015-2.
  • [86] H. Ding, Z-Y. Tang, W. Li, M. Wang, D. Song, Microstructures and Mechanical Properties of Fe-Mn(A1,Si) TRIP/TWIP Steels, Journal of Iron and Steel Research International 13/6 (2006) 66-70, DOI: 10.1016/S1006-706X(06)60113-1.
  • [87] Z.I. Mi, D. Tang, L. Yan, J. Guo, High Strength and High Plasticity TWIP Steel for Modern Vehicle, Journal of Materials Science and Technology – Shenyang 21/4 (2005) 451-454.
  • [88] O. Bouaziz, N. Guelton, Modeling on TWIP Effect on Work Hardening, Materials Science and Engineering: A 319-321 (2001) 246-249, DOI: 10.1016/S09215093(00)02019-0.
  • [89] S. Allain, J.-P. Chateau, O. Bouaziz, A Physical Model of the Twinning-Induced Plasticity Effect in a High Manganese Austenitic Steel, Materials Science and Engineering: A 387-389 (2004) 143-147, DOI: 10.1016/j.msea.2004.01.060.
  • [90] U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, A. Weise, Development and characterization of high strength impact resistant FeMn(Al,Si) TRIP/TWIP steels, Steel Research 73/6-7 (2016) 294-298, DOI: 10.1002/srin.200200211.
  • [91] S. Kruijver, L. Zha, J. Sietsma, E. Offerman, N. Dijk, L. Margulies, E. Lauridsen, S. Grigull, H. Poulsen, S. van der Zwaag, In situ observations on the austenite stability in TRIPsteel during tensile testing, Steel Research 73/6-7 (2016) 236-241, DOI: 10.1002/srin.200200202.
  • [92] H. Ding, H. Ding, D. Song, Z. Tang, P. Yang, Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn, Materials Science and Engineering: A 528/3 (2011) 868-873, DOI: 10.1016/j.msea.2010.10.040.
  • [93] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, TWIP Mechanism in High-Mn Austenitic Steels and Its Effect on Steels, in: M. Muruganant, C. Ali, B. Raj (Eds.), Frontiers in Materials Processing, Applications, Research and Technology, Springer Singapore, 2018, 321-331, DOI: 10.1007/978-981-10-4819-7_27.
  • [94] L.A. Dobrzański, J. Mazurkiewicz, W. Borek, M. Czaja, Newly-Developed High-Manganese Fe–Mn– (Al, Si) Austenitic TWIP and TRIP Steels, in: J. Zhao, Z. Jiang (Eds.), Rolling of Advanced High Strength Steels: Theory, Simulation and Practice, CRC Press, Taylor & Francis Group, 224-288.
  • [95] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Structure and Mechanical Properties of High-Manganese Steels, in: S. Hashmi (Ed.), Comprehensive Materials Processing, G.F. Batalha (Ed.), Vol. 2: Materials Modeling and Characterization, Elsevier Ltd., 2014, 199-218.
  • [96] L.A. Dobrzański, W. Borek, J. Mazurkiewicz: Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions, Archives of Metallurgy and Materials 61/2 (2016) 725-730, DOI: 10.1515/amm-2016-0124.
  • [97] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Influence of high strain rates on the structure and mechanical properties of high-manganes austenitic TWIP-type steel, Materialwissenschaft und Werkstofftechnik 47/56 (2016) 428-435, DOI: 10.1002/mawe.201600518.
  • [98] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Influence of hot-working conditions on a structure of X11MnSiAl17-1-3 steel, Advanced Materials Research 1036 (2014) 122-127, DOI: 10.4028/www.scientific.net/AMR.1036.122.
  • [99] L.A. Dobrzański, W. Borek, M. Czaja, J. Mazurkiewicz, Structure of X11MnSiAl17-1-3 steel after hot-rolling and Gleeble simulations, Archives of Materials Science and Engineering 61/1 (2013) 13-21.
  • [100] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review Materials Science and Engineering: A 342 (2003) 58-79, DOI: 10.1016/S0921-5093(02)00259-9.
  • [101] J. Ratajski, W. Gulbiński, J. Staśkiewicz, J. Walkowicz, P. Myśliński, A. Czyżniewski, T. Suszko, A. Gilewicz, B. Warcholiński, Hard coatings for woodworking tools – a review, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 668-674.
  • [102] H. Caliskan, P. Panjan, C. Kurbanoglu, Hard Coatings on Cutting Tools and Surface Finish, in: M.S.J. Hashmi (Ed.), Comprehensive Materials Finishing, Vol. 3, Amsterdam, Elsevier, 2017, 230242, DOI: 10.1016/B978-0-12-803581-8.09178-5.
  • [103] C. Subramanian, K.N. Strafford, Review of multicomponent and multilayer coatings for tribological applications, Wear 165/1 (1993) 85-95, DOI: 10.1016/0043-1648(93)90376-W.
  • [104] A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 49/2 (2011) 69-96.
  • [105] J. Gurland, New scientific approaches to development of tool materials, Journal International Materials Reviews 33/1 (1988) 151-166, DOI: 10.1179/imr.1988.33.1.151.
  • [106] S. Zhang, W. Zhu, TiN coating of tool steels: a review, Journal of Materials Processing Technology 39 (1993) 165-177, DOI: 10.1016/0924-0136(93)90016-Y.
  • [107] K. Bobzin, High-performance coatings for cutting tools, CIRP Journal of Manufacturing Science and Technology 18 (2017) 1-9, DOI: http://dx.doi.org/10.1016/j.cirpj.2016.11.0041755-5817/ß2016CIRP.
  • [108] M. Sokovic, J. Kopac, L.A. Dobrzanski, J. Mikula, K. Golombek, D. Pakula, Cutting Characteristics of PVD and CVD – Coated Ceramic Tool Inserts Tribology in Industry 28/1-2 (2006) 3-8.
  • [109] L.A. Dobrzański, D. Pakuła, K. Gołombek, A.D. Dobrzańska-Danikiewicz, M. Staszuk, Structure and properties of the multicomponent and nanostructural coatings on the sintered tool materials, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 299-329, DOI: 10.5772/65400.
  • [110] L.A. Dobrzański, M. Adamiak, TiN and Ti(C,N) coatings on high-speed steels with Ti addition: their structure and properties, in: G. Petzow (Ed.), Fortschritte in der Metallographie, Berichte der 10. Internationalen Metallographie-Tagung, Loeben, Austria, Sonderbände der Praktischen Metallographie 30, DGM Informationsgesellschaft mbH, Frankfurt, Germany, 1999, 569-574.
  • [111] M. Staszuk, L.A. Dobrzański, T. Tański, W. Kwaśny, M. Musztyfaga-Staszuk, The effect of PVD and CVD coating structures on the durability of sintered cutting edges, Archives of Metallurgy and Materials 59/1 (2014) 269-274, DOI: 10.2478/amm-2014-0044.
  • [112] K. Lukaszkowicz, L.A. Dobrzański, G. Kokot, P. Ostachowski, Characterization and properties of PVD coatings applied to extrusion dies, Vacuum 86/12 (2012) 2082-2088, DOI: 10.1016/j.vacuum.2012.04.025.
  • [113] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [114] L.A. Dobrzański, M. Polok-Rubiniec, M. Adamiak, PVD coatings deposited onto plasma nitrided X37CrMoV5-1 type steel, International Journal of Materials and Product Technology 33/3 (2008) 226239, DOI: 10.1504/IJMPT.2008.020584.
  • [115] M. Adamiak, L.A. Dobrzański, Microstructure and selected properties of hot-work tool steel with PVD coatings after laser surface treatment, Applied Surface Science 254/15 (2008) 4552-4556, DOI: 10.1016/j.apsusc.2008.01.091.
  • [116] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201/1-3 (2008) 310-314, DOI: 10.1016/j.jmatprotec.2007.11.283.
  • [117] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43/10 (2008) 3400-3407, DOI: 10.1007/s10853-008-2523-3.
  • [118] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials Surface Engineering: Compendium of Knowledge and Academic Textbook, International OCSCO World Press, Gliwice, 2018 (in Polish).
  • [119] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
  • [120] M. Bystrzejewski, M.H. Rummeli, T. Gemming, H. Lange, A. Huczko, Catalyst-free synthesis of onionlike carbon nanoparticles, New Carbon Materials 25/1 (2010) 1-8, DOI: 10.1016/S1872-5805(09)60011-1.
  • [121] S. Zhu, G. Xu, Single-walled carbon nanohorns and their applications, Nanoscale 2 (2010) 2538-2549, DOI: 10.1039/C0NR00387E.
  • [122] J. Zhang, Z. Zhu, Y. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K., Carlson, N.A. Fokina, P.R. Schreiner, D. Tománek, H. Shinohara, Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid, Angewandte Chemie International Edition 52 (2013) 3717-3721, DOI: 10.1002/anie.201209192.
  • [123] H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications, Journal of Materials Chemistry 22 (2012) 24230-24253, DOI: 10.1039/C2JM34690G.
  • [124] J.R. Rostrup-Nielsen, J. Sehested, Whisker carbon revisited, Studies in Surface Science and Catalysis 139 (2001) 1-12, DOI: 10.1016/S0167-2991(01)80174-9.
  • [125] S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology, Science and Technology of Advanced Materials 10 (2009) 1-6, DOI: 10.1088/1468-6996/10/6/065002.
  • [126] P. Jagdale, J.M. Tulliani, A. Tagliaferro , A. Lopez, I. Prestini, G. Ferro, Carbon Nano Beads (CNBs): a new ingredient in reinforcing materials, Workshop IGF, Forni di Sopra (UD), 2012, 113-119.
  • [127] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nature Nanotechnology 7 (2012) 11-23, DOI: 10.1038/nnano.2011.209.
  • [128] K. Ostrikov, Colloquium: Reactive plasmas as a versatile nanofabrication tool, Reviews of Modern Physics 77 (2005) 489-511, DOI: 10.1103/RevModPhys.77.489.
  • [129] A.D. Dobrzańska-Danikiewicz, D. Cichocki, MWCNTs Manufactured by CCVD Method, in: Carbon Nanotechnology, One Central Press, Altrincham, UK, 2014 1-30.
  • [130] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Nanocomposites composed of carbon nanotubes coated with nanocrystals of noble metals, Open Access Library, Annal V (2) 2015, 1-131 (in Polish).
  • [131] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, W. Wolany, Comparative Analysis of the Structure of Nano-Composites Consisting of MWCNTs and Pt or Re Nanoparticles, in: Carbon Nanotechnology, One Central Press, Altrincham, UK, 2015, 31-53.
  • [132] A.D. Dobrzańska-Danikiewicz, D. Cichocki, Synthesis of Carbon Nanotubes and Carbon-Metallic Nanocomposites, in: Study of Problems in Modern Science: New Technologies in Engineering, Advanced Management, Efficiency of Social Institutions, University of Technology and Life Sciences, Bydgoszcz, Poland, 2015, 191-200.
  • [133] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Synthesis and Characterization of Pt/MWCNTs Nanocomposites, Physica Status Solidi B 250/12 (2013) 2569-2574, DOI: 10.1002/pssb.201300083.
  • [134] M.-F. Ng, S.L. Sun, R.Q. Zhang, Potential visible light absorption in 3-Å-diam carbon nanotubes, Physical Review B 72 (2005) 033406-1–033406-4, DOI: 10.1103/PhysRevB.72.033406.
  • [135] K.E. Gonsalves, C.R. Halberstadt C.T. Laurencin, L.S. Nair (Ed.), Biomedical Nanostructures, John Wiley & Sons, Inc., New Jersey, 2008.
  • [136] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
  • [137] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605, DOI: 10.1038/363603a0.
  • [138] S.M. Mukhopadhyay (Ed.), Nanoscale multifunctional materials. Science and applications, John Wiley & Sons, Inc., New Jersey, 2012.
  • [139] L.A. Dobrzański, A. Dobrzańska-Danikiewicz, T. Tański, W. Sitek, Surface engineering development perspectives identified on the basis of technology foresight results, Proceedings of the 2nd Mediterranean Conference & New Challenges on Heat Treatment and Surface Engineering, Proceedings, Dubrovnik – Cavtat, Croatia, 2013, 61-68.
  • [140] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, J. Mazurkiewicz, B. Tomiczek, Ł. Reimann, E-transfer of materials surface engineering e-foresight results, Archives of Materials Science and Engineering 52/2 (2011) 87-100 & Open Access Library 6 (2011) 572594.
  • [141] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, A. Sękala, Results of Technology Foresight in the Surface Engineering Area, Applied Mechanics and Materials 657 (2014) 916-920, DOI: 10.4028/www.scientific.net/AMM.657.916.
  • [142] A.D. Dobrzanska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, Open Access Library 1(7) (2012) 1-289.
  • [143] A.D. Dobrzańska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8(26) (2013) 1-823 (in Polish).
  • [144] A.D. Dobrzańska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge-based economy, Materials Science Forum 706-709 (2012) 2511-2516. DOI: 10.4028/www.scientific.net/MSF.706-709.2511.
  • [145] G.G. Wallace, S.E. Moulton, R.M.I. Kapsa, M.J. Higgins, Carbon, Organic Bionics,Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012.
  • [146] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162-163, DOI: 10.1038/318162a0.
  • [147] K. Kurotobi, Y. Murata, A Single Molecule of Water Encapsulated in Fullerene C60, Science 333 (2011) 613-616, DOI: 10.1126/science.1206376.
  • [148] J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications, Beilstein Journal of Nanotechnology 5 (2014) 19801998, DOI: 10.3762/bjnano.5.207.
  • [149] K. Lukaszkowicz, M. Szindler, A. Drygała, L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, I. Pasternak, A. Przewloka, M.M. Szindler, M. Domański, Graphene-based layers deposited o nto flexible substrates: Used in dye-sensitized solar cells as counter electrodes, Applied Surface Science 424 (2017) 157-163, DOI: 10.1016/j.apsusc.2017.02.040.
  • [150] K. Lukaszkowicz, M. Pawlyta, I. Pasternak, L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, M. Szindler, A. Drygała, J. Sitek, Characterisation of graphene-based layers for dye-sensitised solar cells application, Surface Engineering 32/11 (2016) 816822, DOI: 10.1080/02670844.2016.1164276.
  • [151] A. Drygała, L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, M. Szindler, K. Lukaszkowicz, M. Domański, A carbon-nanotubes counter electrode for flexible dye-sensitized solar cells, Materiali in Tehnologije 51/4 (2017) 623-629, DOI: 10.17222/mit.2016.206.
  • [152] L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, A. Drygała, A. Wierzbicka, K. Lukaszkowicz, M. Szindler, Carbon nanomaterials application as a counter electrode for dye-sensitized solar cells, Archives of Metallurgy and Materials 62/1 (2017) 27-32, DOI: 10.1515/amm-2017-0004.
  • [153] L.A. Dobrzański, M.M. Szindler, M. Szindler, K. Lukaszkowicz, A. Drygała, M. Prokopiuk vel Prokopowicz, Nanocrystalline TiO2 powder prepared by sol-gel method for dye-sensitized solar cells, Archives of Metallurgy and Materials 61/2 (2016) 833-836, DOI: 10.1515/amm-2016-0140.
  • [154] A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk vel Prokopowicz, M. Pawlyta, K. Lukaszkowicz, Carbon nanotubes counter electrode for dyesensitized solar cells application, Archives of Metallurgy and Materials 61/2 (2016) 803-806, DOI: 10.1515/amm-2016-0135.
  • [155] L.A. Dobrzański, A. Mucha, M. Prokopiuk vel Prokopowicz, M. Szindler, A. Drygała, K. Lukaszkowicz, Characteristics of dye-sensitized solar cells with carbon nanomaterials, Materiali in Tehnologije 50/5 (2016) 649-654, DOI: 10.17222/mit.2014.134.
  • [156] L.A. Dobrzański, A. Mucha, M. Prokopiuk vel Prokopowicz, A. Drygała, K. Lukaszkowicz, Technology of dye-sensitized solar cells with carbon nanotubes, Archives of Materials Science and Engineering 70/2 (2014) 70-76.
  • [157] L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, The influence of reduced graphene oxide on the structure of the electrodes and the properties of dyesensitized solar cells, Archives of Materials Science and Engineering 77/1 (2016) 12-30.
  • [158] M. Grätzel, Review: Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4/2 (2003) 145-153, DOI: 10.1016/S1389-5567(03)00026-1.
  • [159] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chemical Review 110/11 (2010) 6595-6663, DOI: 10.1021/cr900356p.
  • [160] H.C. Weerasinghe, F. Huang, Y.B. Cheng, Fabrication of flexible dye sensitized solar cells on plastic substrates, Nano Energy 2/2 (2013) 174-189, DOI: 10.1016/j.nanoen.2012.10.004.
  • [161] G. Yue, X. Ma, W. Zhang, F. Li, J. Wu, G. Li, A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counterelectrode, Nanoscale Research Letters 10/1 (2015) 1-9, DOI: 10.1186/1556-276X-10-1.
  • [162] W. Liu, C. Hong, H. Wang, M. Zhang, M. Guo, Enhanced photovoltaicperformance of fully flexible dye-sensitized solar cells based on the Nb2O5coated hierarchical TiO2, Applied Surface Science 364 (2016) 676-685, DOI: 10.1016/j.apsusc.2015.12.197.
  • [163] G.Y. Han, J.M. Pringle, Y. Cheng, Photovoltaic characteristics and stability of flexible dye-sensitized solar cells on ITO/PEN substrates, RSC Advances 4 (2014) 1393-1400, DOI: 10.1039/C3RA45508D.
  • [164] K.S. Novoselov, Nobel Lecture: Graphene: Materials in the Flatland, Reviews of Modern Physics 83/3 (2011) 837-849, 10.1103/RevModPhys.83.837.
  • [165] A.K. Geim, Nobel Lecture: Random walk to graphene, Reviews of Modern Physics 83/3 (2011) 851-861, DOI: 10.1103/RevModPhys.83.851.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4ad9604-aa32-487c-bd8b-b3f0e7d5b5c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.