PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The decay power law in turbulence generated by grids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that turbulence in the flow can be characterized by two main parameters: the intensity and scale (such as macro- or microscale of length, time or speed). Turbulence in wind tunnels can be generated by a variety of means (placed perpendicularly to the flow) like passive and active grids, most often grids of round or square wires, perforated plates and so on. The aim of this study is to gain a detailed knowledge of the degree of turbulence isotropy and homogeneity in the flow behind the grids of variable geometry. For this purpose, skewness and kurtosis of the velocity fluctuations and also transverse variation for five grids of different parameters were determined. Additionally, some new results on the influence of the initial conditions of turbulence generation on the decay law of turbulence are given.
Rocznik
Tom
Strony
93--107
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Gad-el-Hak M., Corrsin S.: Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62(1973), 1, 115–143.
  • [2] Mydlarski L., Warhaft Z.: On the onset of high – Reynolds – number grid – generated wind tunnel turbulence. J. Fluid Mech. 320(1996), 331–368.
  • [3] Valente P.C., Vassilicos J.C.: The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687(2011), 300–340.
  • [4] Batchelor G.K.: The Theory of Homogeneous Turbulence, Cambridge 1953.
  • [5] Mohamed M.S., La Rue J.C.: The decay power law in grid – generated turbulence. J. Fluid Mech. 219(1990), 195–214.
  • [6] Jimenez J.: Turbulent velocity fluctuations need to be Gaussian. J. Fluid Mech. 376(1998), 139–147.
  • [7] Roach P.E.: The generation of nearly isotropic turbulence by means of grids. J. Heat Fluid Flow 8(1986), 2, 82–92.
  • [8] Uberoi M.S., Wallis S.: Effect of grid geometry on turbulence secay. Phys. Fluids 10(1967), 1216–1224.
  • [9] Corrsin S.: Encyclopedia of Physics. Springer 8(1963), 2, 568.
  • [10] Grant H.L., Nisbet I.C.T.: The inhomogeneity of grid turbulence. J. Fluid Mech. 2(1957), 3, 263–272.
  • [11] Makita H.: Realization of a large-scale turbulence field in a small wind tunel. Fluid Dyn. Res. 8(1991), 53–64.
  • [12] Makita H., Sassa K.: Active Turbulence Generation in a Laboratory Wind Tunnel Advances in Turbulence. Springer-Verlag, Berlin 1991.
  • [13] Mydlarski L., Warhaft Z.: Passive scalar statistics in high-Peclet-number grid turbulence. J. Fluid. Mech. 358(1998), 135–175.
  • [14] Semenov E.S.: Measurements of turbulence characteristics in a closed volume with artificial turbulencje. Combust. Expl. Shock Wave. 1(1965), 57–62.
  • [15] Kwon S., Wu M.S., Driscoll J.F., Faeth G.M.: Flame surface properties of premixed flames in isotropic turbulence: measurements and numerical simulation. Combust. Flame 88(1992), 221–238.
  • [16] Gillespie L., Lawes M., Sheppard C.G.W., Woolley R.: Aspects of laminar and turbulent burning velocity relevant to SI engines. SAE Techn. (2000), paper 2000-01-0192.
  • [17] Birouk M., Sarh B., Gokalp I.: An attempt to realize experimental isotropic turbulence at low Reynolds number. Flow Turbul. Combust. 70(2003), 325– 348.
  • [18] Mikhailova N.P., Repik E.U., Sosedko Yu.P.: Reynolds number effect on the grid turbulence degeneration law. Fluid Dynamics 40(2005), 5, 714–725.
  • [19] Derbunovich G.I., Zemskaya A.S., Repik E. U., Sosedko Yu.P.: Using grids for controlling the turbulent flow structure in wind tunnels. Uch. Zap. TsAGI 13(1982), 1, 11 (in Russian).
  • [20] Comte-Bellot G., Corrsin S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25(1965), 657–682.
  • [21] Batchelor G.K., Townsend A.A.: Decay of isotropic turbulence in the initial period. Proc. Roy. Soc. A 193(1948), 539–558.
  • [22] Repik E.U., Sosedko Yu.P.: Controlling the Flow Turbulence Level. Fizmatlit, Moscow 2002 (in Russian).
  • [23] Wierciński Z.: The stochastic theory of the natural laminar-turbulent transition in the boundary layer. Transactions IFFM, 102(1997), 89–110.
  • [24] Wierciński Z.: Experimental investigation of laminar-turbulent transition at the Institute of Fluid Flow Machinery, Transactions IFFM 114(2003).
  • [25] Grzelak J.: Simultaneous impact of intensity and turbulence scale on the parameters of the by-pass laminar-turbulent transition. PhD thesis, The Szewalski Institute of Fluid-Flow Machinery PASci, Gdańsk 2013 (in Polish).
  • [26] Wierciński Z.: Design assumptions of the subsonic wind tunnel with low level of turbulence. Scientific Description Nr 165/81, IMP PAN, Gdansk 1981a (in Polish).
  • [27] t27) Żabski J., Wierciński Z.: Experimental stand for hot-wire probe calibration. Design assumptions, parameters and technical specification. Scientific Description Nr 2174/02, IMP PAN, Gdansk 2002 (in Polish).
  • [28] Programmerñs Tool-kit for StreamWare, Installation and User’s Guide. DANTEC Dynamics A/S, Denmark, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4aca8eb-1dbf-4e76-a785-a28b91d8e806
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.