PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of Polylactide-Based Wrapping Films for the Food Industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fizyczne i mechaniczne właściwości folii opakowaniowych dla przemysłu spożywczego
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to produce wrapping films made of biodegradable polymer PLA (polylactide) and its modification in the form of a polymer mixture with additions of aluminosilicate – montmorillonite and anti-bacterial concentrate – SilverBatch nanosilver, followed by analysis of selected mechanical properties of these films. The assessment of mechanical properties included checking the tensile strength, as well as assessment of the degree of deformation of the film due to force and of the value of Young’s modulus measured. The results were analyzed statistically using such indicators as arithmetic mean and standard deviation.
PL
Celem pracy było wytworzenie folii opakowaniowych wykonanych z polimeru resorbowalnego PLA (polaktydu) i jego modyfikacja w postaci mieszaniny polimerów z dodatkiem glinokrzemianu – montmorylonitu i koncentratu przeciwbakteryjnego – nanosrebra SilverBatch, a następnie analiza wybranych właściwości fizycznych i mechanicznych tych folii. Zmiany właściwości fizycznych próbek folii sprawdzono poprzez inkubację materiału w kwasie buraczanym. Ocena właściwości mechanicznych obejmowała sprawdzenie wytrzymałości na rozciąganie, ocenę stopnia odkształcenia folii pod wpływem siły i zmierzonej wartości modułu Younga. Wyniki analizowano statystycznie przy użyciu takich wskaźników, jak średnia arytmetyczna i odchylenie standardowe.
Rocznik
Strony
63--68
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University of Science and Technology AGH, Faculty of Material Science and Ceramics, Department of Biomaterials, Kraków, Poland
  • University of Science and Technology AGH, Faculty of Material Science and Ceramics, Department of Biomaterials, Kraków, Poland
  • University of Agriculture in Cracow, Faculty of Production and Power Engineering, Department of Machines Exploitation, Ergonomics and Production Processes, Kraków, Poland
  • University of Agriculture in Cracow, Faculty of Production and Power Engineering, Department of Machines Exploitation, Ergonomics and Production Processes, Kraków, Poland
Bibliografia
  • 1. Öz AT, Süfer Ö, Çelebi Sezer Y. Poly (Lactic Acid) Films in Food Packaging Systems. Food Science and Nutrition Technology 2017; 2, ISSN: 2574-2701.
  • 2. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of Poly(Lactic Acid): Characterization of Chemical Structure, Thermal Stability And Mechanical Properties. Polymer Degradation and Stability 2010; 95: 116-125.
  • 3. Pillin I, Montrelay N, Bourmaud A, Grohens Y. Effect of Thermo-Mechanical Cycles on the Physico-Chemical Properties of Poly(Lactic Acid). Polymer Degradation and Stability 2008, 93 (2): 321-328.
  • 4. Grijpma DW, Pennings AJ. (Co)polymers of L-lactide. 1. Synthesis, Thermal Properties And Hydrolytic Degradation. Macromolecural Chemistry and Physis. 1994; 195 (5): 1633-1647.
  • 5. Perego G, Cella GD, Bastioli C. Effect of Molecular Weight and Crystallinity on Poly(Lactic Acid) Mechanical Properties. Journal of Applied Polymer Science 1996; 59 (1): 37-43.
  • 6. Sinclair RG. The Case for Polylactic Acid as a Commodity Packaging Plastic. J Macromol Sci – Pure and Applied Chemistry 1996; A33(5): 585-597.
  • 7. Yang X, Yuan M, Li W, Zhang G. Synthesis and Properties of Collagen/Polylactic Acid Blends. J Appl Polym Sci. 2004; 94(4): 1670-1675.
  • 8. Bastioli C. (Ed.) Handbook of Biodegradable Polymers, Smithers Rapra Technology. 2005.
  • 9. Fan Y, Nishida H, Shirai Y, Tokiwa Y, Endo T. Thermal Degradation Behaviour of Poly(Lactic Acid) Stereocomplex. Polym Degrad Stab. 2004; 86 (2): 197-208.
  • 10. Natureworks® PLA polymer 2002D Extrusion/Thermoforming [www.natureworksllc.com]. c2005 [updated 2005; cited 2020 Feb 07]. Available from: https://www.natureworksllc.com/Products/2-series-for-extrusion-thermoforming.
  • 11. Oswald TA, Menges G. (Eds.) Material Science Of Polymers For Engineers (2nd ed.), Hanser. 2003, Munich.
  • 12. Youssef AM, El-Sayed SM. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydrate Polymers 2018; 193: 19-27.
  • 13. Fortunati E, Peltzer M, Armentano I, Torre L, Jimenez A, Kenny JM. Effects of Modified Cellulose Nanocrystals on the Barrier and Migration Properties of PLA Nanobiocomposites. CarbohydrPolym. 2012; 90: 948-956.
  • 14. Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny JM. Extraction of Cellulose Nanocrystals from Phormiumtenax Fibres. Journal of Polymers and the Environment 2012; 21: 319-328.
  • 15. Li P, Guo H, Yang K, Yu X, Qu X, Naito K, Zhang Q. Nanoarchitectonics Composites of Thermoplastic Starch and Montmorillonite Modified with Low Molecular Weight Polylactic Acid. Journal of Nanoscience and Nanotechnology 2020; 20: 2955-2963.
  • 16. Ramesh P, Prasad BD, Narayana KL. Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/PLA-Hybrid Biocomposites. SILICON, 2019.
  • 17. Othman SH, Ling HN, Talib RA, Naim MN, Risyon NP, Saifullah M. PLA/MMT and PLA/Halloysite Bio-Nanocomposite Films: Mechanical, Barrier, and Transparency. Journal of Nano Research 2019; 59: 77-93.
  • 18. Rao RU, Venkatanarayana B, Suman KNS. Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today-Proceedings. 2019; 18: 85-97.
  • 19. Shayan M, Azizi H, Ghasemi I, Karrabi M. Influence of Modified Starch and Nanoclay Particles on Crystallization and Thermal Degradation Properties of Cross-Linked Poly (Lactic Acid). Journal of Polymer Research 2019; 2.
  • 20. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai E, Berglund LA, Kenny JM. Multifunctional Bionanocomposite Films of Poly (Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydrate Polymers 2012; 87: 1596-1605.
  • 21. Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M, Visai L, Kenny JM. Polylactide and Carbon Nanotubes/Smectite-Clay Nanocomposites: Preparation, Characterization, Sorptive and Electrical Properties. Journal of Applied Polymer Science 2012; 124: 87-98.
  • 22. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM. Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering. Progress in Polymer Science 2013; 38: 1720-1747.
  • 23. EN ISO 527-1: 2012. Plastics – Determination of Tensile Properties – Part 1: General Principles.
  • 24. Florjańczyk Z, Dębowski M, Chwojnowska E, Łokaj K, Ostrowska J. Synthetic and Natural Polymers in Modern Polymeric Materials. Polymers 2009; 54: 611-625.
  • 25. Šupová M, Martynková GS, Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Science of Advanced Materials 2011; 3: 1-25.
  • 26. Pal M, (2014). Importance of hygienic packaging in food industry. MSc Lecture Note.
  • 27. Addis Ababa University, College of Veterinary Science, Debre Zeit, Ethiopia. Pp.1-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4ac7293-3800-4447-9875-299a54ef4fd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.