PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual laboratories in the teaching of mechanical technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to familiarise the reader with the issue of virtual laboratories and to demonstrate their possible use on a concrete example. This example deals with the use of virtual laboratories in the teaching of mechanical engineering in high schools and universities. The Covid-19 pandemic has led to significant changes in the teaching process and its organisation. In this period, teaching usually took place online, which was implemented using resources such as Google Classroom or MS Teams. This article presents a sample task a project on which students of the second and third year of study at a secondary technical school are working. The project has an interdisciplinary character, because during its implementation students apply and further develop skills and knowledge from several subjects, namely physics, mechanics, chemistry and CAD design. The project is dedicated to the design of a pulley casting for a steel rope.
Rocznik
Strony
135--155
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
  • Department of Technics, Faculty of Education, University Hradec Králové, Rokitanského 63, Hradec Králové 500 03, Czech Republic, +420-605-550-772
  • Department of Technics, Faculty of Education, University Hradec Králové, Rokitanského 63, Hradec Králové 500 03, Czech Republic, +420-605-550-772
Bibliografia
  • [1] Saranya A.K. A Critical Study on the Efficiency of Microsoft Teams in Online Education. In: Gayathri R, editor. Efficacy of Microsoft Teams during COVID-19. A SurveyPublisher: Bonfring Publication; 2020. ISBN: 9789389515282.
  • [2] Sudarsana IK, Made Anggara Putra IB, Temon Astawa IN, Lali Yogantara IW. The use of Google classroom in the learning process. 1st Int Conf Advance Sci Innov (ICASI). IOP Conf Series, J Phys: Conf Series 1175;2019. DOI: 10.1088/1742-6596/1175/1/012160.
  • [3] Dhawan S. Online learning: A Panacea in the time of COVID-19 crisis. J Educational Technol Systems. 2020;49(1):5-22. DOI: 10.1177/0047239520934018.
  • [4] Handke J, Schäfer AM. E-Learning, E-Teaching und E-Assessment in der Hochschullehre. Eine Anleitung. Oldenbourg, München; 2012. ISBN: 9783486708004.
  • [5] Swan K. Virtual interactivity: design factors affecting student satisfaction and perceived learning in asynchronous online courses. Distance Educ. 2001;22(2):306-31. DOI: 10.1080/0158791010220208.
  • [6] Saritepeci M, Cakir H. The effect of blended learning environments on student motivation and student engagement: A study on social studies course. In: Education and Science. 2015. DOI: 10.15390/EB.2015.2592.
  • [7] Heinze A, Procter Ch. Online communication and information technology education. J Information Technol Educ. 2006;5:235-49. DOI: 10.28945/245.
  • [8] Major Š, Hubálovská M, Wacławek M. Using the Raspberry Pi microcomputers in STEM education in technically oriented high schools. Chem Didact Ecol Metrol. 2021;26(1-2):73-88. DOI: 10.2478/cdem-2021-0006.
  • [9] Major Š, Hubálovska M, Loskot R. Alternative forms of laboratory teaching during the lockdown period caused by the COVID-19 pandemic. Int J Information Educ Technol 2022;12(11):1737-47. DOI: 10.18178/ijiet.2022.12.11.1731
  • [10] Mohr-Schroeder MJ, Cavalcanti M, Blyman K. STEM Education: Understanding the Changing Landscape. In: Sahin A, editor. A Practice-based Model of STEM Teaching: Stem Students on the Stage (SOS)™. Sense Publishers, Netherlands; 2015. ISBN: 9789463000192. DOI: 10.1007/978-94-6300-019-2_1.
  • [11] Yilmaz H. A study of determination of benchmarks during the new formation of integrated STEM leader preparation program. European J STEM Educ. 2022;7(1):10. DOI:10.20897/ejsteme/12634.
  • [12] English LD. STEM education K-12: perspectives on integration. Int J STEM Education. 2016:3:3. DOI: 10.1186/s40594-016-0036-1.
  • [13] Becker K, Park K. Effects of integrative approaches among science, technology, engineering and mathematics (STEM) subjects on students learning: a preliminary meta-analysis. Am J Educational Res. 2014;2(10):862-75. DOI: 10.12691/education-2-10-4.
  • [14] Asghar A, Ellington R, Rice E, Johnson F, Prime G. Supporting STEM education in secondary science contexts. Interdiscipl J Problem-Based Learning. 2012;6(2):85-125. DOI: 10.7771/1541-5015.1349.
  • [15] Falloon G, Hatzigianni M, Bower M, Forbes A, Stevenson M. Understanding K-12 STEM education: A framework for developing STEM literacy. J Sci Educat Technol. 2020;29:369-85. DOI: 10.1007/s10956-020-09823-x.
  • [16] Simpson A, Bouhafa Y. Youths’ and adults’ identity in STEM: A systematic literature review. J STEM Educat Res. 2020;3:167-94. DOI: 10.1007/s41979-020-00034-y.
  • [17] Li Y. International Journal of STEM Education - a platform to promote STEM education and research worldwide. Int J STEM Education. 2014:1. DOI: 10.1186/2196-7822-1-1.
  • [18] Sanders M. STEM, STEM Education, STEMmania, The Technology Teacher. 2009;68:20-6. Available from: www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf.
  • [19] Bozkurt A, Ucar H, Hasan, G. Durak, Idil S. The current state of the art in STEM research: A systematic review study. Cypriot J Educational Sci. 2019;14:374-83. DOI: 10.18844/cjes.v14i3.3447.
  • [20] McComas WF. Construction of Scientific Knowledge. In: McComas WF, editor. The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning. 2014. pp. 26. DOI: 10.1007/978-94-6209-497-0.
  • [21] Paul KM, Maltese AV, Valdivia SD. Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students. Int J STEM Educat. 2020;7:45. DOI: 10.1186/s40594-020-00243-2.
  • [22] Ng O, Shi L, Ting F. Exploring differences in primary students’ geometry learning outcomes in two technology-enhanced environments: dynamic geometry and 3D printing. Int J STEM Education. 2020;7:50. DOI: 10.1186/s40594-020-00244-1.
  • [23] Malcom SM, Chubin DE, Jesse JK. Standing Our Ground: A Guidebook for STEM Educators in the Post-Michigan Era. Am Associat Advancement Sci. 2004. Available from: www.aaas.org/sites/default/files/Capacity_Center/1_Front_Matter.pdf.
  • [24] Teitelbaum MS. Falling Behind?: Boom, Bust, and the Global Race for Scientific Talent. Princeton University Press. 2014. DOI: 10.2307/j.ctt5hhq5c.
  • [25] Teitelbaum MS. STEM, Immigration, and Controversy: Does the U.S. have enough STEM Workers? Available from: https://arefiles.ucdavis.edu/uploads/filer_public/2014/11/04/teitelbaumoctober9.pdf.
  • [26] Hasanah U. Key definitions of STEM Education: Literature review. Interdiscipl J Environ Sci Education. 2020;16(3):e2217. DOI: 10.29333/IJESE/8336.
  • [27] Juškaite L. The Impact of the Virtual Laboratory on the Physics Learning Process: Society. Integration. Education Proc Internat Sci Conf. Vol. V, May 24th - 25th, 2019:159-68. DOI: 10.17770/sie2019vol5.3804.
  • [28] Tatli Z, Ayas A. Effect of virtual chemistry laboratory on students achievement. Educational Technol Soc. 2013;16:159-70. Available from: www.jstor.org/stable/10.2307/jeductechsoci.16.1.159.
  • [29] Potkonjak V, Gardner M, Callaghan V, Mattila P, Guetl C, Petrovičs C, et al. Virtual laboratories for education in science, technology, and engineering. Computer Education. 2016;95:309-27. DOI: 10.1016/j.compedu.2016.02.002.
  • [30] Kolb DA. Experiential Learning. Englewood Cliffs, NJ: Prentice-Hall; 1984. ISBN: 0132952610.
  • [31] Moon JA. A Handbook of Reflective and Experiential Learning: Theory and Practice. Taylor Francis Group; 2005. DOI: 10.4324/9780203416150.
  • [32] Stavenga de Jong JA, Wierstra RFA, Hermanussen J. An exploration of the relationship between academic and experiential learning approaches in vocational education. British J Educational Psychology. 2006;76(1):155-69. DOI: 10.1348/000709905X42932.
  • [33] Beckett G, Slater T. Global Perspectives on Project-Based Language Learning, Teaching, and Assessment: Key Approaches, Technology Tools, and Frameworks. Oxon: Routledge; 2019. ISBN: 978103208821.
  • [34] Yasseri D, Finley P, Patrick M, Mayfield BE, Davis DW, Thompson P, et al. The hard work of soft skills: augmenting the project-based learning experience with interdisciplinary teamwork, Instructional Sci. 2018;46:457-88. DOI: 10.1007/s11251-017-9438-9.
  • [35] Hye-Jung L, Cheolil L. Peer evaluation in blended team project-based learning: What do students find important? J Educational Technol Soc. 2012;15(4):214-24.
  • [36] Perrault EK, Albert CA. Utilizing project-based learning to increase sustainability attitudes among students. Appl Environ Education Communication. 2017;17(2):96-105. DOI: 10.1080/1533015X.2017.1366882
  • [37] Beard C. The Experiential Learning Toolkit: Blending Practice with Concepts. 2nd Edition. London, New York, Delhi: Kogan Page; 2012. ISBN: 9780749450786.
  • [38] Ahannad F. Self-directed learning: A core concept in adult education. Online J Distance Education e-Learning. 2023;11(3):2956-62. DOI: 10.1155/2020/3816132.
  • [39] Clark J. White G. Experiential learning: A definitive edge in the job market. Am J Business Education. 2010;3(2):115-8. DOI: 10.19030/ajbe.v3i2.390.
  • [40] Itin CM. Reasserting the philosophy of experiential education as a vehicle for change in the 21st century. J Phys Education. 1999;22(2):91-8. DOI: 10.1177/105382599902200206.
  • [41] Boud D, Cohen R, Walker D. Using Experience for Learning. Society for Research into Higher Education and Open University Press, 1993. ISBN: 9780335190959.
  • [42] Beard C. Experiential Learning Design: Theoretical Foundations and Effective Principles. 1st Edition. Routledge: Kindle Edition; 2022. ISBN: 9780367466534.
  • [43] De Graaff E, Kolmos A. Characteristics of problem-based learning. Int J Eng Education. 2003;19(5):657-62. Available from: www.ijee.ie/articles/Vol19-5/IJEE1450.pdf.
  • [44] Kolodner JL, Camp PJ, Crismond D, Fasse B, Gray J, Holbrook J, et al. Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design TM into practice. J Learning Sci. 2009;12(4):495-547. DOI: 10.1207/S15327809JLS1204_2.
  • [45] Chang GW, Yeh Z-M, Pan S.-Y, Liao C-C, Chang H-M. A progressive design approach to enhance project-based learning in applied electronics through an optoelectornic ensing project. IEEE Trans Education. 2008;51(2):220-33. DOI: 10.1109/TE.2007.907321.
  • [47] Jonassen D, Strobel J, Lee CB. Everyday problem solving in engineering: Lessons for engineering educators. J Eng Education. 2006;95(2):139-51. DOI: 10.1002/j.2168-9830.2006.tb00885.x.
  • [48] Stiwne EE, Alves MG. Higher education and employability of graduates: will Bologna make a difference? Europ Educational Res J. 2010;9(1):32-44. DOI: 10.2304/eerj.2010.9.1.32.
  • [49] Chu KWS. Inquiry project-based learning with a partnership of three types of teachers and the school librarian. J Am Soc Information Sci Technol. 2009;60(8):1671-86. DOI: 10.1002/asi.21084.
  • [50] Razzouk R, Shute V. What is design thinking and why is it important? Rev Educational Res. 2012;82(3):330-48. DOI:10.3102/0034654312457429.
  • [51] Alexander S. Flexible Learning in Higher Education. In: Peterson P, Baker E, McGaws B, editors. International Encyclopedia of Education (Third ed.). Oxford: Elsevier; 2010. pp. 441-7. DOI: 10.1016/B978-0-08-044894-7.00868-X.
  • [52] Schindler LA, Burkholder GJ, Morad OA, Marsh C. Computer-based technology and student engagement: a critical review of the literature. Int J Educational Technol Higher Education. 2017;14(1):25. DOI: 10.1186/s41239-017-0063-0.
  • [53] Rusek M, Vojíř K, Šubová Š. Lower-secondary school chemistry textbooks’ didactic equipment. Chem Didact Ecol Metrol. 2020;25(1-2):69-77. DOI: 10.2478/cdem-2020-0004.
  • [54] Rusek M, Chroustová K, Bílek M, Skřehot P, Hon Z. Conditions for experimental activities at elementary and high schools from chemistry teachers’ point of view. Chem Didact Ecol Metrol. 2020;25(1-2):93-100. DOI: 10.2478/cdem-2020-0006.
  • [55] Rusek M, Vosyková L. Evaluation of Czech non-chemical vocational school chemistry textbooks’ text difficulty. Chem Didact Ecol Metrol. 2021;26(1-2):99-108. DOI: 0.2478/cdem-2021-0008.
  • [56] Kramarová L, Prokša M. Pupils’ preconceptions about heat, temperature and energy. Chem Didact Ecol Metrol. 2020;25(1-2):79-91. DOI: 10.2478/cdem-2020-0005.
  • [57] Rusek M, Sakhnini S, Bílek M. Experiments safety - The state of art at schools in Czechia. Chem Didact Ecol Metrol. 2022;27(1-2):153-63. DOI: 10.2478/cdem-2022-0009.
  • [58] Simeonov V. Didactical principles of environmental monitoring. Chem Didact Ecol Metrol. 2019;24(1-2):99-106. DOI: 10.2478/cdem-2019-0008.
  • [59] Frontasyeva M, Kamnev A. Ecology and society. Impacted ecosystems. Part I. Chem Didact Ecol Metrol. 2018;23(1-2):7-29. DOI: 10.1515/cdem-2018-0001.
  • [60] Krzeszowski S. Evaluation of the usefulness of selected computer programs in the context of educating students of the environmental engineering. Chem Didact Ecol Metrol. 2016;20(1-2):31-7. DOI: 10.1515/cdem-2015-0003.
  • [61] Kalpakjian S, Schmid S. Manufacturing Engineering and Technology. International edition. 4th ed. Prentice Hall; 2001. ISBN: 0130174408.
  • [62] Bralla JG. Design for Manufacturability Handbook. New York: McGraw-Hill: 1999. ISBN: 0852969767.
  • [63] Degarmo EP, Black JT, Kohser RA. Materials and Processes in Manufacturing (9th ed.). Wiley; 2003. ISBN: 0471656534.
  • [64] Halliday D, Resnick R, Walker J. Fundamental of Physics. John Wiley Sons Inc; 2013. ISBN: 9781118230725.
Uwagi
1) Błąd w numeracji bibliografii: brak poz. 46.
2) Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4a86591-368a-41a6-a4ca-655553a32782
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.