PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coefficient inequalities for a subclass of Bazilevič functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let f be analytic in D={z:|z| < 1} with f(z)=z+∑∞n=2anzn, and for α ≥ 0 and 0 < λ ≤ 1, let B1(α,λ) denote the subclass of Bazilevič functions satisfying (…) <λ for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f ∈ B1(α,λ), thus extending recent work in the case λ = 1.
Wydawca
Rocznik
Strony
27--37
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Department of Mathematics, Brawijaya University, Malang, Indonesia
autor
  • Department of Mathematics, Brawijaya University, Malang, Indonesia
  • Department of Mathematics, Swansea University, Swansea, United Kingdom
  • Department of Mathematics, Brawijaya University, Malang, Indonesia
Bibliografia
  • [1] I. E. Bazilevič, On a case of integrability in quadratures of the Löwner-Kufarev equation, Mat. Sb. 37 (1955), no. 79, 471–476, (Russian) MR 17, 356.
  • [2] T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford, Ser. 2 23 (1972), 135–142.
  • [3] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38 (1973), no. 2, 261–271.
  • [4] D. K. Thomas, On the coefficients of Bazilevič functions with logarithmic growth, Indian J. Math. 57(2015), no. 3, 403–418.
  • [5] R. R. London and D. K Thomas, On the derivative of Bazilevič functions, Proc. Amer. Math. Soc. 104(1988), no. 1, 235–238.
  • [6] D. K. Thomas, On a subclass of Bazilevič function, Int. J. Math. Math. Sci. 8 (1985), no. 4, 779–783.
  • [7] D. K. Thomas, New Trends in Geometric Function Theory and Applications, World Scientific, 1991, 146–158.
  • [8] S. Ponnusamy and V. Singh, Convolution properties of some classes of analytic functions, Zapiski Nauchnych Seminarov POMI 226 (1996), 138–154. (Also Tranls. Journal of Mathematical Sciences 89 (1998), no. 1, 138–154. Plenum Publishing Corporation).
  • [9] S. Ponnusamy, Differential subordination concerning starlike functions, Proc. Ind. Acad. Sci. (Math. Sci.) 104 (1994), no. 2, 397–411.
  • [10] R. Fourier and S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52 (2007), no. 1, 1–8.
  • [11] Marjono and D. K. Thomas, On a subset of Bazilevič functions, Aust. J. Math. Anal. Appl. 16 (2019), no. 2, 1–10.
  • [12] R. Singh, On a class of star-like functions, Compos. Math. 19 (1968), no. 1, 78–82.
  • [13] M. Obradovič and S. Ponnusamy, On the class U, Proceedings 21st Annual Conference of the Jammu. Math. Soc., 2011, p. 25–27.
  • [14] M. Obradovič, S. Ponnusamy and K.-J. Wirths, Logarithmic coefficients and a coefficient conjecture for univalent functions, Monatsh. Math. 185 (2018), no. 3, 489–501.
  • [15] D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions: A Primer, Studies in Mathematics (Book 69), De Gruyter, Germany, 2018.
  • [16] S. Ponnusamy and K.-J. Wirths, Elementary considerations for classes of meromorphic univalent functions, Lobachevskii J. Math. 39 (2018), no. 5, 713–716.
  • [17] S. Ponnusamy and K.-J. Wirths, Coefficient problems on the class U(λ), Probl. Anal. Issues Anal. 7(25) (2018), no. 1, 87–103.
  • [18] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251–257.
  • [19] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malaysian Math. Sci. Soc. 26 (2003), 63 –71.
  • [20] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Acad. Sci. Paris, Ser. I 353 (2015), 505–510, DOI: 10.1016/j.crma.2015.03.003.
  • [21] S. Fitri, Marjono, D. K. Thomas and R. Bagus E. W., Initial coefficients for subclass of Bazilevič functions, J. Phys.: Conf. Ser. 1212 (2019), 012009, DOI: 10.1088/1742-6596/1212/1/012009.
  • [22] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. 3 (1968), no. 18, 77–94.
  • [23] A. Janteng, S. Halim and M. Darus, Hankel determinants for starlike and convex functions, Int. J. Math. Anal. 1 (2007), no. 13, 619–625.
  • [24] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), no. 2, 337–346.
  • [25] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 16 (1967), no. 13, 108–112.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4a69708-c582-4bff-a84f-de8e8bdc71ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.