PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Welding and Corrosion Behavior of AISI H13 Welds: The Effect of Filler Metal on the Microstructural Evolutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Welding of AISI H13 tool steel which is mainly used in mold making is difficult due to the some alloying elements and it high hardenability. The effect filler metal composition on the microstructural changes, phase evolutions, and hardness during gas tungsten arc welding of AISI H13 hot work tool steel was investigated. Corrosion resistance of each weld was studied. For this purpose, four filler metals i.e. ER 312, ER NiCrMo-3, ER 80S, and 18Ni maraging steel were supplied. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of weldments. It was found the ER 80S weld showed the highest hardness owing to fully martensitic microstructure. The hardness in ER 312 and ER NiCrMo3 weld metals was noticeably lower than that of the other weld metals in which the microstructures mainly consisted of austenite phase. The results showed that the corrosion rate of ER 312 weld metal was lower than that other weld metals which is due to the high chromium content in this weld metal. The corrosion rate of ER NiCrMo-3 was lower than that of 18Ni maraging weld. The obtained results from EIS tests confirm the findings of potentiodynamic polarization tests.
Twórcy
  • Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
  • Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
autor
  • Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
  • [1] B. Uddeholm, Bohler-Uddeholm H13 tool steel, 2013.
  • [2] J. Wang, Z. Xu, and X. Lu, J. Mater. Eng. Perform. 29 (3), 1849-1859 (2020).
  • [3] G. A. Roberts, R. Kennedy, G. Krauss, Tool steels, 1998 ASM international.
  • [4] S. Jhavar, C. P. Paul, N. K. Jain, Eng. Fail. Anal. 34, 519-535 (2013).
  • [5] R. A. Meaquita, C. A. Barbosa, Proceedings of Machining, 2004
  • [6] R. A. Mesquita, R. Schneider, Exacta. 8 (3), 307-318 (2010).
  • [7] W. T. Preciado, C. E. N. Bohorquez, Mater. Process. Technol. 179 (1-3), 244-250 (2006).
  • [8] A. Skumavc, J. Tušek, M. Mulc, D. Klobčar, Metalurgija. 53 (4), 517-520 (2014).
  • [9] J. Chen, S.-H. Wang, L. Xue, Mater. Sci. 47 (2), 779-792 (2012).
  • [10] A. Košnik, J. Tušek, L. Kosec, T. Muhič, Metalurgija. 50 (4), 231-234 (2011).
  • [11] S. Thompson, Handbook of mould: Tool and die repair welding, 1999 Elsevier.
  • [12] T. Branza, A. Duchosal, G. Fras, F. Deschaux-Beaume, P. Lours, Mater. Process.
  • [13] P. Peças, E. Henriques, B. Pereira, M. Lino, M. Silva, Build Futur. Innov. (2006).
  • [14] L. E. E. Jae-Ho, J. Jeong-Hwan, J. O. O. Byeong-Don, Y. I. M. Hong-Sup, M. Young-Hoon, Trans. Nonferrous Met. Soc. China. 19, 284-287 (2009).
  • [15] S. U. N. Yahong, S. Hanaki, H. Uchida, H. Sunada, N. Tsujii, Mater. Sci. Technol. 19, 91-93 (2009).
  • [16] R. H. G. e Silva, L. E. dos Santos Paes, C. Marques, K. C. Riffel, M. B. Schwedersky, J. Brazilian Soc. Mech. Sci. Eng. 41 (1), 38 (2019).
  • [17] K. Somlo, G. Sziebig, Ifac-papersonline. 52 (22), 101-107 (2019).
  • [18] J.-L. Desir, Eng. Fail. Anal. 8 (5), 423-437 (2001).
  • [19] J. C. Lippold, Welding metallurgy and weldability, 2015 Wiley Online Library.
  • [20] J. R. Davis, Corrosion of weldments, 2006 ASM international.
  • [21] R. G. Buchheit Jr, J. P. Moran, G.E. Stoner, Corrosion. 46 (8), 610-617 (1990).
  • [22] K. A. Chiang, Y. C. Chen, Mater. Lett. 59 (14-15), 1919-1923 (2005).
  • [23] C. F. G. Baxter, J. Irwin, R. Francis, The Third International Off-shore and Polar Engineering Conference, 1993.
  • [24] M. Liljas, Glas. Scotland, Keynote Pap. V. 2, 13-16 (1994).
  • [25] J. Lippol, J. K. Damian, Welding metallurgy and weldability of stainless steels, 2005 John Wiley & Sons, New York.
  • [26] J. C. Lippold, S. D. Kiser, J. N. DuPont, Welding metallurgy and weldability of nickel-base alloys, 2011 John Wiley & Sons.
  • [27] R. M. Rasouli I, Metall. Eng. 21 (1), 54-71 (2018).
  • [28] S. Kou, Welding metallurgy, 2003 John Wiley & Sons, New Jersey.
  • [29] M. Stern, A. L. Geary, Electrochem. Soc. 104 (1), 56-63 (1957).
  • [30] Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, X. Ren, Surf. Coatings Technol. 204 (24), 3947-3953 (2010).
  • [31] E. E. Stansbury, R. A. Buchanan, Fundamentals of electrochemical corrosion, 2000 ASM international.
  • [32] M. Yeganeh, M. Saremi, Prog. Org. Coatings. 79, 25-30 (2015).
  • [33] P. Langford, J. Broomfield, Constr. Repair. 1 (2), (1987).
  • [34] A. Aguilar, A. A. Sagüés, R. G. Powers, Corrosion Rates of Steel in Concrete, 1990 ASTM International.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a49712e9-ba31-4bca-b01d-b8a95264fedb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.