Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To solve the problems of online route optimization in urban transport logistics, an adaptive dynamic routing system based on GIS data is proposed. Here, it is possible to simultaneously take into account the actual configuration of the urban road network (URN) and the real-time dynamics of traffic flows. Route optimization is performed on a weighted bidirectional graph for an asymmetric dynamic traveling salesman problem using a modified ant colony optimization algorithm. The system allows automatically updating the weights of the graph depending on the current changes in the characteristics traffic in the URN sections, obtained from GIS data, and fixing the optimal configuration of a partially completed route before updating the graph. To test the proposed system, the simulation of dynamic routing processes was conducted in real-time, using the delivery of goods to Żabka grocery stores in Warsaw as an example. The results indicate the proposed method’s feasibility for solving practical urban transport logistics management problems under complex traffic.
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Information Analysis and Information Security. Faculty of Transport and Information Technologies. National Transport University. Kyiv, Ukraine
autor
- Department of Information Analysis and Information Security. Faculty of Transport and Information Technologies. National Transport University. Kyiv, Ukraine
Bibliografia
- 1. Pop Petrică C., Ovidiu Cosma, Cosmin Sabo, Corina Pop Sitar. 2024. „A comprehensive survey on the generalized traveling salesman problem”. European Journal of Operational Research 314(3): 819-835. DOI: https://doi.org/10.1016/j.ejor.2023.07.022.
- 2. Thompson Russell G., Lele Zhang. 2018. „Optimizing courier routes in central city areas”. Transportation Research Part C: Emerging Technology 93: 1-12. DOI: https://doi.org/10.1016/j.trc.2018.05.016.
- 3. Schroten Arno, Anouk Van Grinsven, Eric Tol, Louis Leestemaker, Peter-Paul, et al. Research for TRAN Committee - The impact of emerging technologies on the transport system, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. ISBN 978-92-846-7392-6.
- 4. Darvishan Ayda, Gino J. Lim. 2021. „Dynamic network flow optimization for real-time evacuation reroute planning under multiple road disruptions”. Reliability Engineering & System Safety 214:107644. DOI: https://doi.org/10.1016/j.ress.2021.107644.
- 5. Zantalis Fotios, Grigorios Koulouras, Sotiris Karabetsos, Dionisis Kandris. 2019. „A Review of Machine Learning and IoT in Smart Transportation”. Future Internet 11(4): 94. DOI: https://doi.org/10.3390/fi11040094.
- 6. Yuan Jixue, Jun Song, Yuwen Zhang, Chaozhe Jiang, Fang Xu. 2013. „Planning of Dynamic Routing of Logistics in Urban Public Sports Facilities Based on MAS”. ICTE 2013 - Proceedings of the 4th International Conference on Transportation Engineering: 1156-1162. 19-20 October 2013. Chengdu, China. DOI: https://doi.org/10.1061/9780784413159.168.
- 7. Abousaeidi Mohammad, Rosmadi Fauzi, Rusnah Muhamad. 2015. „Geographic Information System (GIS) modeling approach to determine the fastest delivery routes”. Saudi Journal of Biological Sciences 23(5): 555-564. DOI: https://doi.org/10.1016/j.sjbs.2015.06.004.
- 8. Lyu Zichong, Dirk Pons, Yilei Zhang, Zuzhen Ji. 2021. „Freight operations modelling for urban delivery and pickup with flexible routing: cluster transport modelling incorporating discrete-event simulation and GIS”. Infrastructures 6(12): 180. DOI: https://doi.org/10.3390/infrastructures6120180.
- 9. Tsoukas Vasileios, Eleni Boumpa,Vasileios Chioktour, Maria Kalafati, Georgios Spathoulas, Athanasios Kakarountas. 2023. „Development of a dynamically adaptable routing system for data analytics insights in logistic services”. Analytics 2(2): 328-345. DOI: https://doi.org/10.3390/analytics2020018.
- 10. Park Jungme, Yi Lu Murphey, Ryan McGee, Jóhannes G. Kristinsson, Ming L. Kuang, Anthony M. Phillips. 2014. „Intelligent trip modeling for the prediction of an origin-destination traveling speed profile”. IEEE Transactions on Intelligent Transportation Systems 15(3): 1039-1053. DOI: https://doi.org/10.1109/TITS.2013.2294934.
- 11. Chai Huajun, H.M. Zhang, Dipak Ghosal, Chen-Nee Chuah. 2017. „Dynamic traffic routing in a network with adaptive signal control”. Transportation Research Part C: Emerging Technologies 85: 64-85. DOI: https://doi.org/10.1016/j.trc.2017.08.017.
- 12. Ng Kam K.H., C.K.M. Lee, S.Z. Zhang, Kan Wu, William Ho. 2017. „A multiple colonies artificial bee colony algorithm for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion”. Computers & Industrial Engineering 109: 151-168. DOI: https://doi.org/10.1016/j.cie.2017.05.004.
- 13. Zajkani M.A., R. Rahimi Baghdorani, M. Haeri. 2021. „Model predictive based approach to solve DVRP with traffic congestion”. IFAC-PapersOnLine 54(21): 163-167. DOI: https://doi.org/10.1016/j.ifacol.2021.12.028.
- 14. Zhang Huizhen, Qinwan Zhang, Liang Ma, Ziying Zhang, Yun Liu. 2019. „A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows”. Information Sciences 490: 166-190. DOI: https://doi.org/10.1016/j.ins.2019.03.070.
- 15. Hoogeboom Maaike, Wout Dullaert. 2019. „Vehicle routing with arrival time diversification”. European Journal of Operational Research 275(1): 93-107. DOI: https://doi.org/10.1016/j.ejor.2018.11.020.
- 16. Yu Xu. 2022. „Logistics distribution for path optimization using artificial neural network and decision support system”. Research Square: 1-17. DOI: https://doi.org/10.21203/rs.3.rs-1249887/v1.
- 17. Zhang Ning. 2018. „Smart logistics path for cyber-physical systems with Internet of Things”. IEEE 6: 70808-70819. DOI: https://doi.org/10.1109/ACCESS.2018.2879966.
- 18. Mavrovouniotis Michalis, Maria N. Anastasiadou, Diofantos Hadjimitsis. 2023. „Measuring the performance of ant colony optimization algorithms for the dynamic traveling salesman problem”. Algorithms 16(12): 545. DOI: https://doi.org/10.3390/a16120545.
- 19. Liu Huijun, Ao Lee, Wenshi Lee, Ping Guo. 2023. „DAACO: adaptive dynamic quantity of ant ACO algorithm to solve the traveling salesman problem”. Complex & Intelligent Systems 9: 4317-4330. DOI: https://doi.org/10.1007/s40747-022-00949-6.
- 20. Russo Francesco, Antonio Comi. 2021. „Sustainable urban delivery: the learning process of path costs enhanced by information and communication technologies”. Sustainability 13(23): 1-17. DOI: https://doi.org/10.3390/su132313103.
- 21. Microsoft Learn. “Bing Maps Routes API”. Available at: https://learn.microsoft.com/en-us/bingmaps/rest-services/routes/.
- 22. Dorigo Marco, Mauro Birattari, Thomas Stutzle. 2006. „Ant colony optimization”. IEEE Computational Intelligence Magazine 1(4): 28-39. DOI: https://doi.org/10.1109/MCI.2006.329691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a492ded3-3881-44b6-a71e-e5fa34307021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.