PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Implications and Source Apportionment of Heavy Metal and Hydrocarbon Contaminants in the Soil of a Poorly Crude Oil Remediated Site in Nigeria: A Case of Ikot Ada Udo Community

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ecological risk and source apportionment of heavy metals and hydrocarbons in soil from the study site was carried out. Composite soil samples (n = 48) were collected from 3 sampling points (SP 1, SP 2, SP 3) within the site at 50, 200, and 500 meters, respectively, from the oil well and from a control site (Ibagwa, Abak) at 10,000 meters from the study site, using a hand-held auger. The samples were analyzed for heavy metals using inductively coupled plasma atomic emission spectrometry (ICP–AES, Yobin Yvon JY-24) and total petroleum hydrocarbon (TPH) using Agilent 6890N Gas Chromatography - Flame Ionization Detector (GC– FID model, Japan). Mean levels of heavy metals and TPH were higher in the study site compared to the control. The mean levels of heavy metals were 0.748 mg/kg (Pb), 0.754 mg/kg (Cd), 1.577 mg/kg (Ni), 0.274 mg/kg (Cr), 4.749 mg/kg (Fe), 0.020 mg/kg (V), 0.103 mg/kg (Co), 0.181 mg/kg (As), 5.544 mg/kg (Mn), and 5.187 mg/kg (TPH). The heavy metals in the soil had an increasing sequence of V<Co<As<Cr<Pb<Cd<Ni<Fe<Mn. The soil recorded the Cd, Cr, Fe, V, and As levels above the WHO permissible limits for soil. Ecological risk assessment revealed that Cd had the highest contamination (C<sup>i</sup><sub>f</sub>) (91.47%) and ecological factor (E<sup>i</sup><sub>r</sub>) (99.29%) in the soil, denoting that Cd contributed the most to the ecological instability and contamination of the soil. Co-relation, principal component analysis (PCA), and coefficient of variation (CV) revealed that Pb, Cd, Ni, Cr, Fe, V, As, Mn, and TPH were introduced into the soil through the crude oil spill (artificial sources), while Co originated from natural sources. A thorough clean-up of the spill site is therefore recommended to ecologically restore the soil. More of similar studies are required in other crude oil impacted soils in Niger Delta, Nigeria.
Rocznik
Strony
275--286
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
autor
  • Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
autor
  • Department of Biological Science, Faculty of Natural and Applied Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria
autor
  • Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
autor
  • Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
Bibliografia
  • 1. Adewuyi G.O., Olowu R.A. 2012. Assessment of oil and grease, total petroleum hydrocarbons, and some heavy metals in surface and groundwater within the vicinity of NNPC oil depot in Apata, Ibadan Metropolis, Nigeria. Int. J. Res. Resour., 13, 166–174.
  • 2. Akporido S.O. 2008. An assessment of water, sediment, and soil pollution arising from crude oil spillages in the vicinity of Esi River, Western Niger Delta. University of Ibadan.
  • 3. Alam M.G.M., Tanaka A., Allinson G., Laurenson L.J.B., Stagnitti F., Snow E. 2002. A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicol. Environ. Saf., 53, 348–354.
  • 4. Albers P.H. 1995. Petroleum and individual polycyclic Aromatic hydrocarbons., in: Handbook of Ecotoxicology. Lewis, London, 330–355.
  • 5. Alinnor I.J., Ogukwe C.E., Nwagbo N.C. 2014. Characteristic level of total petroleum hydrocarbon in soil and groundwater of oil impacted area in the Niger Delta Region, Nigeria. J. Environ. Earth Sci., 4, 188–194.
  • 6. Chen T., Liu X.M., Zhu M.Z., Zhao K.I., Wu J.J., Xu J.M., Huang P.M. 2008. Identification of trace element sources and associated risk assessment in vegetable soils in of the urban-rural transitional area of Hangzhou, China. Environ. Pollut., 151, 67–78.
  • 7. Cloquet C., Carignan J., Libourel G., Sterckeman T., Perdrix E. 2006. Tracing source pollution in soils using cadmium and lead isotopes. Environ. Sci. Technol., 40, 2525–2530.
  • 8. Cortes J.E., Suspes A., Roa S., Gonzalez C., Castro H.E. 2012. Total petroleum hydrocarbons by gas chromatography in Colombian waters and soils. Am. J. Environ. Sci., 8, 396–402.
  • 9. Dambo W.B. 2000. Ecotoxicology of heavy metals and petroleum-related compounds on the mangrove oysters (Crasstrea rhizophorea) from the Lower Botany Estuary Port-Harcourt. Africa Linkpress, 26–34.
  • 10. Dollah S.A. 2004. Bioremediation of petroleum hydrocarbon polluted soil: Potentials, principles, and applications. J. Environ. Manag. Educ., 1, 171–180.
  • 11. Ghorbani M.R., Ghanavati N., Babaenejad T., Nazarpour A., Payandeh K. 2020. Assessment of the potential ecological and human health risks of heavy metals in Ahvaz oil field, Iran. PLoS One, 15(11), e0242703. https://doi.org/10.1371/journal.pone.0242703
  • 12. DPR. 2002. Environmental guidelines and standards for the petroleum industry in Nigeria (revised edition).
  • 13. Hamamura N., Olson S., Ward D., Inskeep W. 2006. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl. Environ. Microbiol., 72, 6316–6324.
  • 14. Iwegbue C.M. 2011. Assessment of heavy metal speciation in soils impacted with crude oil in the Niger Delta, Nigeria. Chem. Speciat. Bioavailab., 23, 6–15.
  • 15. Joseph A.P., Iwok E.B., Ekanem S. 2021. Public health threats of heavy metals due to the consumption ofAchachatina marginata (African Giant Land Snail ) from a partially remediated site in Ikot Ada Udo, Akwa Ibom State, South-South. Environ. Pollut. 271, 1–7.
  • 16. Håkanson L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res., 14, 975–1001. DOI: 10.1016/0043-1354(80)90143-8.
  • 17. Håkanson L. 1988. Metal Monitoring in Coastal Environments., in: Metals in Coastal Environments of Latin America, Seeliger U., Lacerda L.D, Patchineelam S.R (Eds). Springer-Verlag, 240–257. DOI:10.1007/978-3-642-71483-2_21.
  • 18. Li F.Q., Pan H.M., Ye W., Zhu L.D., Wang Z.G. 2008. Specificity of heavy metals pollution and and the ecological hazard in urban dust. J. Anhui. Agricult. Sci., 36(6), 2495–2498.
  • 19. Li J.L., He M., Han W., Gu Y.F. 2009. Analysis and assessment of heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J. Hazard. Mater., 164, 976–981.
  • 20. Kackstaetter U.R. & Heinrichs G. 1997. Validity of lowcost laboratory geochemistry for environmental applications. Water Air Soil Pollut., 95, 119–131.
  • 21. Khan A.B., Kathi B. 2014. Evaluation of heavy metal and total petroleum hydrocarbon contamination of roadside surface soil. Int. J. Environ. Sci. Technol., 11(8), 2259–2270.
  • 22. Manta D.S., Angelone M., Bellanca A., Neri R., Sprovieri M. 2002. Heavy metals urban soils: a case study from the city of Palermo (Sicily), Italy. Sci. Total Environ., 300(1–3), 229–243.
  • 23. Mclaughlin M.J., Zarcinas B.A., Stevens D.P., Cook N. 2000. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal., 31, 1661–1700.
  • 24. Nakamura K., Taira J., Higa Y. 2005. Internal elements of the millipede, Chamberlinius haulienensis Wang (Polydesmida: Paradoxosomatidae). Appl. Entomol. Zool. 40, 283–288.
  • 25. Nwaichi E.O., Wegwu M.O., Nwosu U.L. 2014. Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone. Environ. Monit. Assess. 186, 8697–8706.
  • 26. Osam M.U. 2011. Evaluation of the selected wild type legumes in remediation of crude oil contaminated agricultural soils. University of Port Harcourt.
  • 27. Pan H.Y., Lu X.W., Lei K. 2017. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci Total Environ., 609, 1361–1369.
  • 28. Serra-Sogas N.P.D., O’hara R., Canessa P., Keller S., Pelot R. 2008. Visualization of spatial patterns and temporal trends for aerial surveillance of illegal oil discharges in Western Canadian marine waters. Mar. Pollut. Bull., 56, 825–833.
  • 29. Short J. 2003. Long-term effects of crude oil on developing fish: Lessons from the Exxon Valdez oil spill. Energy Sources.
  • 30. SQG. 2010. Sediment quality guidelines of soil. Virginia Department of Environmental Quality, USA.
  • 31. Suleimanov A.Y. 1995. Conditions of waste fluid accumulation at petrochemical and processing enterprise prevention of their harm to water bodies. Meditsina Tr. Promyswe Nnaia Ekol., 12, 31–36.
  • 32. Tietenberg T. 2006. Economics of pollution control, in: Environmental and Natural Resource Economics. Pearson, Boston, 15.
  • 33. Udo E.J. 2008. Environmental impacts of the oil spill at Ikot Ada Udo in Akwa Ibom State, Nigeria. PAM Scientific Laboratories, Uyo, Nigeria, for Environmental Rights Action/Friends of the Earth.
  • 34. Udoh B.T., Chukwu E.D. 2014. Post-impact assessment of oil pollution on some soil characteristics in Ikot Abasi, Niger Delta region, Nigeria. J. Biol. Agric. Healthc., 4, 111–119.
  • 35. Udousoro I.I., Umoren I.U., Izuagie J.M. 2015. Soil invertebrates as bio-monitors of toxic metal pollution in impacted soils. Curr. world Environ., 10, 367–385.
  • 36. Uzoekwe S.A., Oshosanine F.A. 2011. The effect of refinery and petrochemical effluent on water quality of Ubeji creek Warri, Southern Nigeria. Ethiop. J. Environ. Stud. Manag., 4, 107–116.
  • 37. Van Hamme J.D., Singh A., Ward O.P. 2003. Recent advances in petroleum microbiology. Microbiol. Molecular Biol. Rev, 67, 503–549.
  • 38. Wang X. & Feng J. 2009. Effects of crude oil redial on soil chemical properties in oil sites, Momgage Wetland, and China. Environ. Monit. Assess., 161, 271–280.
  • 39. Wang H., Zhao Y., Walker T.R., Wang Y., Luo Q., Wu H. 2021. Distribution characteristics, chemical speciation and human health risk assessment of metals in surface dust in Shenyang City, China. Appl. Geochem., 131, 105031. https://doi.org/10.1016/j.apgeochem.2021.105031
  • 40. WHO. 1996. Permissible limits of heavy metals/physico-chemical properties in soil. Geneva, Switzerland.
  • 41. WHO. 2007. Water, soil, and organisms for pharmaceutical use. Quality assurance of pharmaceuticals: A compendium of guidelines and related materials. 2nd updated edition. Geneva.
  • 42. Xu J., Wang H., Liu Y., Ma M., Zhang T., Zheng X., Zong M. 2016. Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas. Environ. Monit. Assess., 188, 125. https://doi.org/10.1007/s10661-016-5093-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a492ac59-4f2a-47c4-b675-b005eeb957de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.