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ABSTRACT: This study proposes the use of generative adversarial networks (GANs) to solve two crucial
problems in the unmanned ship navigation: insufficient training data for neural networks and convergence of
optimal actions under discrete conditions. To achieve smart collision avoidance of unmanned ships in various
sea environments, first, this study proposes a collision avoidance decision model based on a deep
reinforcement learning method. Then, it utilizes GANs to generate enough realistic image training sets to train
the decision model. According to generative network learning, the conditional probability distribution of ship
maneuvers is learnt (action units). Subsequently, the decision system can select a reasonable action to avoid the
obstacles due to the discrete responses of the generated model to different actions and achieve the effect of
intelligent collision avoidance. The experimental results showed that the generated target ship image set can be
used as the training set of decision neural networks. Further, a theoretical reference to optimize the optimal
convergence of discrete actions is provided.

1 INTRODUCTION navigation environment information, ship internal
information, and shore-based support information.
For example, it can take excellent navigation decisions

Unmanned ocean transportation is sure to [ 1
and send control commands to the execution unit to

revolutionize maritime unmanned navigation in the

future. In October 2016, the Norwegian Maritime
Administration and the Norwegian Coastal Authority
established the world's first autonomous ship test
zone in the Trondheim fiord as well as the Norwegian
Forum for Autonomous Ships. It marked the
promotion of unmanned ship research to the national
level in Norway. In early December 2018, the
"Suomenlinna II" polar passenger ferry successfully
crossed the test area near the port of Helsinki, under
the unmanned state, and passed the remote sea trial.
The intelligent decision-making module is the "brain"
of unmanned ships. It involves various technologies
such as route optimization, risk warning, smart
decision-making, and energy efficiency management.
It can make most decisions based on the external

make appropriate decisions (Finn et al., 2010).

Taking ship collision avoidance as an example, the
intelligent decision-making module obtains the actual
navigation situation around the ship according to the
targets acquired by the radar, AIS, ship-borne
infrared camera, visible light camera, and other
sensors and its fusion information, and conducts a
risk information analysis for the surrounding targets
(Trucco, 2008). If there is a dangerous target, the
collision avoidance decision is made through the
intelligent collision avoidance technology combined
with the current position, direction it is heading
toward, and speed. The instructions formed by the
decision, such as changing the course and changing
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the speed, are sent to the rudder control system. In the
process of collision avoidance of ships, the
information transmitted by multiple sensors and
equipment is continuously integrated, making sure
the collision avoidance scheme is adjusted in time
(Wang, 2007). The core of the current research is how
the decision-making module can satisfy the optimal
navigational operations in all types of extreme
offshore environments.

Therefore, in the risk assessment and early
warning research of unmanned ship navigation, it is
necessary to focus on the unmanned ship in complex
navigation conditions (such as ports, straits, canals,
and other intensive waters), ship collision avoidance
and hydrometeorology, geographical environment,
traffic situation, and other issues. This research is
based on ship sensor data acquisition and training
optimization = of  decision neural networks
(Mazurowski, 2008). An intelligent risk warning
model and method suitable for unmanned ships
under complex navigation conditions is formed to
approach real-time warning of ships (Scheffer, 2012).

In the intelligent decision-making research, an
intelligent fusion correlation analysis is carried out on
static and dynamic targets and navigation conditions
around unmanned ships. Intelligent theories, such as
deep learning, knowledge base, and situation
calculation, are applied. Research on ship navigation
intelligent decision theory based on ship navigation

system information and shore-based support
information, break through the key technologies of
ship  autonomous  meteorological = navigation

technology. Technologies such as ship collision
avoidance, reef avoidance, anti-shelf integration, and
smart processing of navigation information support
autonomous decision-making of ship navigation
(Capraro, 2006).

To achieve intelligent collision avoidance function
of unmanned ships in various environments, a
collision avoidance decision module based on deep
reinforcement learning is proposed to make
autonomous decisions under various conditions
(Mnih, 2015). In the Cyber confrontation game, the
DeepMind team collects enough data for training;
however, in the real navigation environment, it is
difficult to obtain data in a rich and varied nautical
environment. In particular, various types of encounter
ships have different points of observation in different
situations, and it is difficult to predict their future
path of navigation (Sarukkai, 2000). In the process of
calculating the global solution optimal solution, the
decision model is difficult to differentiate due to the
discrete action as a result, the global optimal solution
cannot converge. Therefore, this study proposes a
generative adversarial networks (GANs) model to
solve the problem of neural network training data,
and the combination of GAN and deep reinforcement
learning to solve the convergence problem of optimal
action under discrete action unit conditions.
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2 RELATED WORK

2.1 The principle of GAN

GAN is a new method proposed by Goodfellow
(2014) to train generated models. The method of GAN
includes the generation and discrimination of two
“adversarial” models. The generated model (G) is
used to capture the data distribution, and the
discriminant model (D) is used to estimate the
probability that a sample is derived from real data
rather than the generated data. Both the generator and
discriminator are common convolutional networks as
well as fully connected networks. The generator
generates a sample from the stochastic vector, and the
discriminator discriminates between the generated
sample and the real training set sample.

This optimization process can be attributed to a
two-player minimax game problem. Both purposes
can be achieved through a backpropagation method.
A well-trained generation network can transform any
noise vector into a sample similar to the training set.
This noise can be seen as the encoding of the sample
in a low dimensional space. The generator generates
meaningful data based on the stochastic vectors. In
contrast, the discriminator learns how to determine
real and generated data and then passes the learning
experience to the generator, thereby, enabling the
generator to generate more workable data based on
the stochastic vectors. Such a trained generator can
have many uses; one of them being environmental
generation in automatic navigation.

The specific process to obtain various target ships
is shown in Figure 1. First, a few stochastic vectors are
fed as input in the generator network, and fake data
are subsequently generated by the generator. The
aforementioned fake data can correspond to a few
ship state pictures or navigation data such as AIS data
of a nearby encounter of the given ship or the path
planning data after the ship route is updated. We
input the fake data to the discriminator, and the
discriminator determines whether the input data are
real data or fake data generated by the generator. The
similarity between the generated data and the real
data gradually increases, then the discriminating
ability required by the discriminator also increases
accordingly. Furthermore, the generator and the
discriminator share a mutually competitive and
mutually adversarial equation. The generated data
are considered to sufficiently mirror real data, and
therefore, the fake data input by the generator appear
sufficiently realistic. The approximate accuracy of the
discriminator in this case is 50%. This corresponds to
the target ship image data that are required in a
critical sea environment.

Various target ships with

Stochastic vectors Training set different background
lInpm 'Rauﬂom index "'
Generator Fake Discriminator _ Real / Fake Generated
Network image Network  Accuracy 50% image

Figure 1. Applying GAN generate various target ships with
different background



2.2 GAN application examples

In the previous study, the authors proposed using the
GAN to build an executable method for maritime
navigation route re-planning. The unmanned ship can
independently generate new routes based on the
environmental information around the ship before
any possible danger occurs and can even interrupt the
remote support. With the total generative time less
than one second, the trained model helps the ship
avoid obstacle or any latent disaster. In addition,
GAN is easy to embed into the framework of
reinforcement learning. For example, when using
deep reinforcement learning to solve collision
avoidance problems, GAN can be used to learn the
conditional probability distribution of an action. The
agent (own ship) can select a reasonable route based
on the response of the generated model to different
actions.

2.3 Global optimality of discrete actions

The mathematical equivalent of deep reinforcement
learning can be considered as Markov decision
processes in discrete time defined by five factors (S,
'a’, P, ', v) with a neural network instead of Q-value
(Zhang, 2017). Here, S is the finite state space (state
set) in which the unmanned ship is located; a is the
behavior decision space of the unmanned ship; i.e.,
the set of all actions or reactions in a space in any
state, for example, the left rudder, right rudder,
acceleration, deceleration, heeling, and stopping, etc.
Pa (S) = P(S'IS, a) , where P is a conditional
probability indicating that the unmanned ship reaches
the next state under state s and action 'a. The
probability of the state S', ra (Sl S') is a reward
function, which represents the excitation obtained by
the unmanned ship from the state S to the next state S'
in the case of action a. y & (0,1) is reward
attenuation factor, the reward at the next instant time
tis attenuated using this factor.

In actual navigation practices, completing a
collision avoidance process may require different
operational coordination methods. These operations
are incoherent and discrete. Further, the way different
people respond to the same event may be different.
Generally, both the reward 'r' and the attenuation
function y” are different. Thus, a method to converge
an optimal global action group is required. This study
will discuss the possibility of combining GAN and
deep reinforcement learning to solve this problem.

3 GAN METHOD FOR GENERATING TRAINING
DATA SETS

3.1 Conventional acquisition of target ship data set
method

The acquisition of related target ship data is usually
carried out at the position of the ship's bridge. Here,
we can observe the state of the target ship's
navigation, and then, photograph the target ship that
will be encountered. The author carried out a seven-
day summer research voyage on the university
training ship "FUKAE MARU". A data set of a total of
4,000 images of valid target ships were obtained.

However, this is not enough for the training of neural
recognition networks. The target recognition and
classification require a large number of data sets for
both training as well as target identification, if the
positional posture of the target ship is to be perceived.
Therefore, a new approach to get training data is
needed.

3.2 Example of the GAN generate lifeboat image data

This section mainly demonstrates the use of the demo
provided by Big-GAN, as shown in Figure 2, which is
the process of generating a lifeboat using GAN. In the
images obtained at different times in the generation
process, the sea surface appears in the image
generated in Figure 2.a, and there are a group of
fuzzy things in the middle that cannot identify the
object. In Figure 2.b, the orange upper body and black
rubber are common in the lifeboat. The hull, shown in
Figure 2.c, is an almost completed generated image,
and our eye and training model can roughly identify
this as a lifeboat. We can input different stochastic
vectors and combine the real data input by the
discriminator to get a large number of high-quality
image data sets. As shown in Figure 3, we got three
different types of lifeboats. More importantly, the
background of the lifeboat could also be changed to
provide a large amount of training data for our
unsupervised decision model. It was observed to be
much richer than the target ship data collected from
the real seas.

a. GAN generating.. .

b. GAN generating... ¢. GAN almost generated

Figure 2. Target ship image data-generating process

GAN-generated image 1 ~ GAN-generated image 2 GAN-generated image 3
Figure 3. Example of generated lifeboats with different

backgrounds

The most important part of this research is to
obtain a data set of the target ship with sufficiently
high quality and quantity. As shown in Figure 4, a
portion of the entire large-scale lifeboat target image
data set is shown. These images were not taken by the
camera and were generated entirely from the GAN
model. Using different truncation and noise_seed, our
model could generate various encounter situations at
sea as shown in Figures 5 and 6, as well as the various
forms possible for the target ship at the time of the
encounter; including various types of accidents such
as collision, stranding, fire and loss of goods. We
obtained the training data set for lifeboats, ocean liner
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data sets as shown in Figures 7 and 8, as well as data
sets for various other types of marine moving targets.

Figure 4. Large-scale data generated with different ship
status and backgrounds. (Lifeboat)
Truncation: 0.14; Noise_seed: 0

Figure 5. Large-scale data generated with different ship
status and backgrounds. (Lifeboat)
Truncation: 0.28; Noise_seed: 0

Figure 6. Large-scale data generated with different ship
status and backgrounds. (Lifeboat)
Truncation: 0.56; Noise_seed: 0
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Figure 7. Large-scale data generated with different ship
status and backgrounds. (Ocean liner)
Truncation: 0.10; Noise_seed: 4

Figure8. Large-scale data generated with different ship
status and backgrounds. (Ocean liner)
Truncation: 0.10; Noise_seed: 8

As shown in Figure 4-6, the larger the truncation,
the greater the diversity of the generated samples. In
fact, truncation controls the truncation distance of the
hidden variable distribution (generally Gaussian),
which is the sampling range. Therefore, it is not
difficult to understand its role in diversity. As shown
in Figures 7-8, the influence of the value of
noise_seed on the generated result is the initial
condition of each sample generation, and the final
result will be different, which can be used to improve
the generation diversity. When training image
recognition models of convolutional neural networks
and decision models, such as deep reinforcement
learning, the quality of the input data considerably
affects the effect of the training results. The target
image data set generated by GAN has the same image
size and image density, which can easily solve the
problem of inconsistent input data during the training
process. In addition, the GAN model solves many of
the scene data that are difficult to obtain in a real
navigation environment, making it possible to use
large-scale data entry for deep reinforcement
learning.



4 GAN WITH POLICY GRADIENT FOR OPTIMIZE
DISCRETE ACTIONS.

Although the number of variants of GAN and their
versatility is increasing, their adversarial-thinking has
not changed. In other words, a discriminator that can
identify the real data and generate the data is added
in the generation process, so that the generator G and
the discriminator D can compete with each other. The
role of D is to try to distinguish the real data and the
generated data to improve the generated data that can
confuse D. When D can no longer separate the true
and false data, it is considered that G has reached a
stable state.

The numerous advantages are summarized as
follows:

— It can generate better samples;

— No need to make inferences about hidden
variables during training;

— The model only uses backpropagation without the
need for a Markov chain;

— G's parameter update does not come directly from
the data sample, however, uses backpropagation
from D;

— In theory, as long as the differentiable function can
be used to construct D and G, it can be combined
with deep neural network to make a deep-
generation model.

Part of the agent decision module to complete a
collision avoidance evaluation may require different
action coordination. These discrete actions are
difficult to complete the mathematical differential
operation; thus, it is necessary to find a way to
converge a global optimal action group. The last of
the above advantages is precisely its limitation. In
discrete data, data are not continuous like image
processing and can be differentiated. Therefore, GAN
cannot be realized for discrete data.

As shown in Figure 9, when using the deep
reinforcement learning model to solve the optimal
decision problem, GAN and deep reinforcement
learning are combined to select a reasonable global
optimal action combination. In Figure 9.a, an
adversarial idea is portrayed, where real data from
the sea environment plus generated data of G are
required to train D. However, from the content
described in the related work section, the discrete
output of G is obtained, which makes it difficult for D
to return a gradient to update G, and therefore, a few
changes need to be made. As shown in Figure 9.b, the
value returned by the policy network is G. The
existing dot is called current state. The generated next
dot operation is called action, because D needs to be a
complete sequence score. Thus, the Monte Carlo tree
search (MCTS) is used to complete the various
possibilities of each action. D rewards these complete
sequences, passes information back to G, and updates
G by enhanced learning. This is done to use the
reinforcement learning method to train a generation
network that can generate the global action set.

Generator Sea
(G) Environment
Generate J Real Data
a Discriminator (D)
b State (G)
yd | — Monte
Q Q Q _Carlo
a Search
© o o0 o 0o ‘
_ Policy
6 6 o6 6 6 6 ‘ Gradient

Global Reward (D)

Figure 9. Policy gradient convergence of discrete data

5 CONCLUSION

This study uses the GAN method to implement a
large number of generations of decision model
training data sets. In the generated data set, according
to the settings of the two parameters of truncation and
noise_seed, different target ship image data can be
obtained. Apart from the different positions of the
target ship and state data, the encounter situation of
different backgrounds and scenes and image data of
various target ships under dangerous conditions are
obtained. The target ship image data set generated by
the generative adversarial model is useful to train the
ship target recognition neural network under
different environmental backgrounds, however, for
the ship's motion situation prediction, collision
avoidance decision, etc., it provided discontinuous
data. At the time of processing, GAN did not satisfy
this demand. Therefore, this study combines GAN
with the idea of policy gradient in deep reinforcement
learning, and a method for solving the convergence
problem of discrete global action set is creatively
proposed.
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