PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emergence of population structure in socio-cognitively inspired ant colony optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A metaheuristic proposed by us recently, Ant Colony Optimization (ACO) hybridized with socio-cognitive inspirations, turned out to generate interesting results compared to classic ACO. Even though it does not always find better solutions to the considered problems, it usually finds sub-optimal solutions usually. Moreover, instead of a trial-and-error approach to configure the parameters of the ant species in the population, in our approach, the actual structure of the population emerges from predefined species-to-species ant migration strategies. Experimental results of our approach are compared against classic ACO and selected socio-cognitive versions of this algorithm.
Wydawca
Czasopismo
Rocznik
Strony
81--98
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
autor
  • Universite Libre de Bruxelles, Campus de la Plaine, ULB CP212, boulevard du Triomphe, 1050 Bruxelles, Belgium
autor
  • Universite Catholique de Louvain, IPSY, Place Cardinal Mercier 10 bte L3.05.01 a 1348. Louvain-la-Neuve, Belgium
autor
  • Jagiellonian University, Institute of Philosophy, Krakow, Poland
Bibliografia
  • [1] Bugajski I., Listkiewicz P., Byrski A., Kisiel-Dorohinicki M., Korczynski W., Lenaerts T., Samson D., Indurkhya B., Nowe A.: Enhancing Particle Swarm Optimization with Socio-cognitive Inspirations, Procedia Computer Science, vol. 80, pp. 804-813, special issue: International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA, 2016. http://dx.doi.org/10.1016/j.procs.2016.05.370.
  • [2] Bukowski H.: What Influences Perspective Taking A dynamic and multidimensional approach. Ph.D. thesis, Universit e catholique de Louvain, 2014.
  • [3] Bukowski H., Curtain A., Samson D.: Can you resist the influence of others? Altercentrism, egocentrism and interpersonal personality traits. In: Proceedings of the Annual Meeting of the Belgian Association for Psychological Sciences (BAPS). Universit e catholique de Louvain, 2013.
  • [4] Bukowski H., Samson D.: Can emotions influence level-1 visual perspective taking?, Cognitive Neuroscience, vol. 7(1-4), pp. 182-191, 2016.
  • [5] Byrski A., Swiderska E., Lasisz J., Kisiel-Dorohinicki M., Lenaerts T., Samson D., Indurkhya B., Now e A.: Socio-cognitively inspired ant colony optimization, Journal of Computational Science, vol. 21, pp. 397-406, 2017. http://dx.doi.org/ 10.1016/j.jocs.2016.10.010.
  • [6] Chira C., Dumitrescu D., Pintea C.: Heterogeneous Sensitive Ant Model for Combinatorial Optimization. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO '08, pp. 163-164. ACM, New York, NY, USA, 2008. http://dx.doi.org/10.1145/1389095.1389120.
  • [7] Choudhury S., Blakemore S.J., Charman T.: Social cognitive development during adolescence, Social Cognitive and Affective Neuroscience, vol. 1(3), pp. 165-174, 2006.
  • [8] Dorigo M., Stutzle T.: Ant Colony Optimization. Bradford Books, 2004.
  • [9] Dorigo M., Di Caro G.: The Ant Colony Optimization Meta-Heuristic. In: Corne D., Dorigo M., Glover F. (eds.): New Ideas in Optimization, McGraw-Hill, pp. 11-32, 1999.
  • [10] Dorigo M., Di Caro G., Gambardella L.M.: Ant Algorithms for Discrete Optimization, tech. rep., IRIDIA/98-10, Universite Libre de Bruxelles, Belgium, 1999.
  • [11] Feldman H., Rand M.E.: Egocentrism-Altercentrism in the Husband-Wife Relationship, Journal of Marriage and Family, vol. 27(3), pp. 386-391, 1965.
  • [12] Gardner M.: Mathematical Games. The fantastic combinations of John Conway's new solitaire game "life", Scientic American, vol. 223, pp. 120-123, 1970.
  • [13] Gutin G.: Traveling salesman problem. In: Floudas C.A., Pardalos P.M., (eds.): Encyclopedia of Optimization, pp. 3935-3944. Springer US, 2009. http://dx. doi.org/10.1007/978-0-387-74759-0_687.
  • [14] Jiang Y.: Concurrent Collective Strategy Diffusion of Multiagents: The Spatial Model and Case Study, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 39(4), pp. 448-458, 2009. http://dx.doi.org/10.1109/TSMCC.2009.2013474.
  • [15] Johnson M., Demiris Y.: Perceptual Perspective Taking and Action Recognition, International Journal of Advanced Robotic Systems, vol. 2(4), pp. 301-308, 2005.
  • [16] Johnson S.: Emergence: The Connected Lives of Ants, Brains, Cities, and Software, Scribner, New York, NY, 2001.
  • [17] Nadel J.: Some reasons to link imitation and imitation recognition to theory of mind. In: Doric J., Proust J., (eds.): Simulation and Knowledge of Action, pp. 119-135, John Benjamins, New York, 2002.
  • [18] Nowe A., Verbeeck K., Vrancx P.: Multi-type Ant Colony: The Edge Disjoint Paths Problem. In: Dorigo M.E.A. (ed.), Ant Colony Optimization and Swarm Intelligence, pp. 202-213, Springer, 2004.
  • [19] Pais D.: Emergent Collective Behavior in Multi-Agent Systems: An Evolutionary Perspective, PhD thesis, Princeton University, 2012.
  • [20] Sekara M., Kowalski M., Byrski A., Indurkhya B., Kisiel-Dorohinicki M., Samson D., Lenaerts T.: Multi-pheromone ant Colony Optimization for Socio- cognitive Simulation Purposes, Procedia Computer Science, vol. 51, pp. 954-963, 2015.
  • [21] Świderska E., Łasisz J., Byrski A., Lenaerts T., Samson D., Indurkhya B., Nowe A., Kisiel-Dorohinicki M.: Measuring Diversity of Socio-Cognitively In- spired ACO Search, pp. 393-408, Springer International Publishing, Cham, 2016. http://dx.doi.org/10.1007/978-3-319-31204-0_26.
  • [22] Wolpert D.H., Macready W.G.: No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol. 1(1), pp. 67-82, 1997.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a48cad94-c1c5-43e6-b1c9-f3650b3f3fae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.