PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the method of fundamental solutions to the analysis of fully developed laminar flow and heat transfer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, fully developed laminar flow and heat transfer in an internally longitudinally finned tube are investigated through application of the meshless method. The flow is assumed to be both hydrodynamically and thermally developed, with a uniform outside-the-wall temperature. The governing equations have been solved numerically by means of the method of fundamental solutions in combination with the method of particular solutions to obtain the velocity and temperature distributions. The advantage of the proposed approach is that it does not require mesh generation on the considered domain or its boundary, but uses only a cloud of arbitrarily located nodes. The results, comprising the friction factor as well as the Nusselt number, are presented for varied length values and fin numbers, as well as the thermal conductivity ratio between the tube and the flowing fluid. The results show that the heat transfer improves significantly if more fins are used.
Rocznik
Strony
505--518
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Mechanical Technology, Poznań, Poland
  • Poznan University of Technology, Institute of Applied Mechanics, Poznań, Poland
Bibliografia
  • 1. Alves C.J.S., Silvestre A.L., 2004, Density results using Stokeslets and a method of fundamental solutions for the Stokes equations, Engineering Analysis with Boundary Elements, 28, 10, 1245-1252
  • 2. Benitez-Rangel J.P., Trejo-Hernandez M., Morales-Hernandez L.A., Dominguez- -Gonzalez A., 2010, Improvement of the injection mold process by using vibration through a mold accessory, Materials and Manufacturing Processes, 25, 7, 577-580
  • 3. Bergles E., 1998., Handbook of Heat Transfer, McGraw-Hill, New York, NY, USA, 3rd edition
  • 4. Chen C.S., Karageorghis A., Smyrlis T.S. (ed.), 2008, The Method of Fundamental Solutions – A Meshless Method. Dynamic Publishers, Inc., Atlanta
  • 5. Golberg M.A., 1995, The method of fundamental solutions for Poisson’s equation, Engineering Analysis with Boundary Elements, 16, 3, 205-213
  • 6. Golberg M.A., Chen C.S., 1999, The method of fundamental solutions for potential, Helmholtz and diffusion problems, [In:] Boundary integral methods: numerical and mathematical aspects. Southampton: Computational Mechanics Publications, Golberg M.A. (Edit.), 103-176
  • 7. Johnston R.L., Fairweather G., 1984, The method of fundamental solutions for problems in potential flow, Applied Mathematical Modelling, 8, 4, 265-270
  • 8. Karageorghis A., Fairweather G., 1987, The method of fundamental solutions for the numerical solution of the biharmonic equation, Journal of Computational Physics, 69, 2, 434-59
  • 9. Karageorghis A., Fairweather G., 1998, The method of fundamental solutions for elliptic boundary value problems, Advances in Computational Mathematics, 9, 69-95
  • 10. Kupradze V.D., Aleksidze M.A., 1964, The method of functional equations for the approximate solution of certain boundary value problems, USSR Computational Mathematics and Mathematical Physics, 4, 4, 82-126
  • 11. Mathon R., Johnston R.L., 1977, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM Journal on Numerical Analysis, 14, 4, 638-650
  • 12. Nesis E. I., Shatalov A. F., Karmatskii N. P., 1994, Dependence of the heat transfer coef- ficient on the vibration amplitude and frequency of a vertical thin heater, Journal of Engineering Physics and Thermophysics, 67, 1/2, 696-698
  • 13. Rout S.K., Mishra D. P., Thatoi D. N., Acharya A. K., 2012, Numerical analysis of mixed convection through an internally finned tube, Advances in Mechanical Engineering, Vol.2012, Article ID 918342, p. 10
  • 14. Siddique M., Khaled A.-R.A., Abdulhafiz N.I., Boukhary A.Y., 2010, Recent advances in heat transfer enhancements: a review report, International Journal of Chemical Engineering, vol. 2010, Article ID 106461, p. 28, doi:10.1155/2010/106461
  • 15. Soliman H.M., Chau T.S., Trupp A.C., 1980, Analysis of laminar heat transfer in internally finned tubes with uniform outside wall temperature, Journal of Heat Transfer, 102, 598-604
  • 16. Soliman H.M., Feingold A., 1977, Analysis of fully developed laminar flow in longitudinal internally finned tubes, Chemical Engineering Journal, 14, 119-128
  • 17. Tien W.-K., Yeh R.-H., Hsiao, J.-C., 2012, Numerical analysis of laminar flow and heat transfer in internally finned tubes, Heat Transfer Engineering, 33, 11, 957-971
  • 18. Tsai C.C., 2007, The method of fundamental solutions for three-dimensional elasto-static problems of transversely isotropic solids, Engineering Analysis with Boundary Elements, 31, 7, 586-594
  • 19. Tsai C.C., Young D.L., Chiu C.L., Fan C.M., 2009, Numerical analysis of acoustic modes using the linear least squares method of fundamental solutions, The Journal of Sound and Vibration, 324, 3/5, 1086-1100
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a48b31b8-2d57-45c6-93f5-836f6633a086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.