PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of hybrid woven fabrics with Shape Memory Alloys wires embedded

Identyfikatory
Warianty tytułu
PL
Analiza jakości tkanin hybrydowych z wprowadzonymi elementami SMA
Języki publikacji
EN
Abstrakty
EN
Until recently, Shape Memory Alloys (SMAs) were predominantly developed for applications in the biomedical and engineering industry, and only a limited number of applications in textiles are known. Fabrics made of natural fibres (e.g. cotton, flax and their mixtures) present many advantages, such as wearing comfort, but they are subject to creasing. The aim of this study was to investigate the possibility of compensating for this disadvantage by using SMAs to create aesthetic low crease flax/cotton fabrics. Body Temperature SMAs (BT SMA) that regain their (straight) form when they are subject to human body temperature were used for this purpose. Clothing and bed sheeting are potential applications of these hybrid structures, which become wrinkle-free when they are exposed to the heat of the body, a hair dryer or that generated by an electrical current. The materials selected to achieve this purpose were the following: (1) textile yarns (e.g. single cotton or flax/cotton yarns, two-fold flax yarns and two types of loop fancy yarns) and (2) BT SMA wires of 300 um diameter. A power weaving loom and a hand-weaving shuttle loom were used to embed the SMA wires, and four types of hybrid fabrics were produced. The thickness, wrinkle recovery, dimensional stability as well as the cohesion of the SMA wires in the woven fabric were tested. All the tests were performed before and after a washing cycle for both the hybrid and reference fabrics. An increase in thickness was noticed after washing, and the recovery time after crushing varied according to the type of fabric. The slippage of SMA wires from the fabrics was noticed for all the samples, which was dependent on the type of yarns used, their linear density and the weaving process.
PL
Jak dotychczas materiały z pamięcią kształtu były rzadko stosowane w wyrobach włókienniczych. Celem pracy było zbadanie uzyskania możliwości likwidacji zgniecenia tkaniny po ogrzaniu jej przez ciało ludzkie lub np. suszarkę do włosów. W celu uzyskania tego efektu wyprodukowano tkaniny do których wprowadzono druty ze stopu charakteryzującego się pamięcią kształtu (SMA). Zastosowano następujące materiały: przędze tekstylne - pojedyncze przędze bawełniane lub z mieszanek bawełny z lnem, podwójne przędze oraz przędze fantazyjne. W tkaniny wprowadzono druty SMA o średnicy 300 um. 4 rodzaje tkanin hybrydowych wykonano za pomocą krosien ręcznych i mechanicznych. Badano grubość tkaniny, odprężność zgniecenia, stabilność wymiaru jak również spójność drutów z tkaniny. Wszystkie testy przeprowadzono przed i po praniu tkanin. Stwierdzono wzrost grubości po praniu a czas odprężenia zależny był od rodzaju tkaniny. Stwierdzono również wyślizgiwanie się drutów z tkaniny we wszystkich badanych próbkach, zależne od masy liniowej przędzy, grubości tkaniny i procesu tkania.
Rocznik
Strony
64--69
Opis fizyczny
Bibliogr. 24 poz., fig., tab.
Twórcy
autor
  • Ghent University, Department of Textiles, Technologiepark 907, 9052 Ghent, Belgium
  • Technical University of Lodz, Institute of Architecture of Textiles, Zeromskiego 116, 90-543 Lodz, Poland
  • Technical University of Lodz, Institute of Architecture of Textiles, Zeromskiego 116, 90-543 Lodz, Poland
autor
  • Moi University, School of Engineering P. O. BOX 3900, Eldoret, Kenya
Bibliografia
  • 1. http://www.shape-memory-alloys.com.
  • 2. http://www.nimesis.com/visited April 2009.
  • 3. http://www.gzespace.com/gzenew/index. php?pg=oricalco&lang=en visited April 2009.
  • 4. EU project AVALON, on http://avalon. ditf-denkendorf.de/ visited April 2009.
  • 5. EU project Loose&Tight, on http://www. dappolonia-research.com/loose&tight/.
  • 6. Carosio S., Monero A.; Smart and hybrid materials: perspectives for their use in textile structures for better health care, Wearable eHealth Systems for Personalized Health Management, Studies in Health Technology and Informatics, vol. 108, pp. 335-344, IOS Press.
  • 7. Boussu F.; Shape Memory alloys used in fabrics for car seats, 2nd NEST Conference 22-23 February 2007, Gothenburg, Sweden.
  • 8. Hendrickson S.; Getting back in Shape, on http://www.sciwrite.caltech.edu/journal03/A-L/hendrickson.html visited on 12/02/2008.
  • 9. http://www.mrsec.wisc.edu/Edetc/modules/HighSchool/memory/Investigation2- Teacher.pdf visited December 2009.
  • 10. Stylios G.K.; Engineering textile and clothing aesthetics using shape changing materials, part II in Intelligent textiles and clothing, edited by H Mattila, Tampere University of Technology, Finland, Woodhead Textiles Series No. 54.
  • 11. Stylios G.K., Wan T.; Shape memory training for smart fabrics, on http://tim.sagepub.com/cgi/content/abstract/29/3-4/321 visited on 12/02/09.
  • 12. www.marielleleenders.nl.
  • 13. Maetani I., Ukita T., Inone H., Yoshida M., Igarashi Y., Sakai Y.; Knitted nitinol stent insertion for various intestinal stenoses with a modified delivery system, Gastrointest Endosc. 2001 Sep; 54(3):364-7.
  • 14. Strecker E.P., Boos I., Vetter S., Strohm M., Domschke S.; Nitinol esophageal stents: new designs and clinical indications, Cardiovasc Intervent Radiol. 1996 JanFeb; 19(1):15-20.
  • 15. Maetani I., Masahiro S., Masaki I., Tomoko T., Takeo U. and Yoshihiro S. Technical tips for stent placement in the proximal colon using knitted nitinol esophageal stent, Workshop 26 at the 68th Japanese Gastroenterological Endoscopy Society (JGES) Meeting, October 2004, Fukuoka Japan (Gastroenterol Endosc; 46 Suppl. 2: 1869).
  • 16. Hanus J., et al.; Measurement and Comparison of Mechanical Properties of Nitinol Stents, 2005 Phys. Scr. T118 264-267.
  • 17. Tokuda T., Shomura Y., Tanigawa N., Kariya S., Komemushi A., et al.;, Mechanical Characteristics of Composite Knitted Stents, CardioVascular and Interventional Radiology, Volume 32, Number 5 / September, 2009.
  • 18. Stoeckel D., Bonsignore C., Duda S.; A survey of stent design, Minimally Invasive Therapy & Allied Technologies 2002, Vol. 11, No. 4, Pages 137-147, DOI 10.1080/136457002760273340.
  • 19. F. Boussu, G. Bailleul, J.-L. Petitniot and H. Vinchon; Development of shape memory alloy fabrics for composite structures, AUTEX Res J, No1 (2002), page 1-7.
  • 20. Zhang R.X., Q.Q. Ni, A. Masuda, T. Yamamura, M. Iwamoto; Vibration characteristics of laminated composite plates with embedded Shape Memory Alloys, Composite Structures, Elsevier Science Publishing Company, Inc., No. 74 (2006), page 389-398.
  • 21. Yvonne Y.F., Chan Vili; Investigating Smart Textiles Based on Shape Memory Materials, Textile Research Journal 2007, 77, 290.
  • 22. ISO 6330: 2000: “Textiles-Domestic washing and drying procedures for textile testing”.
  • 23. ISO 1765:1986 “Machine-made textile floor coverings -- Determination of thickness”.
  • 24. NBN G55 020:1988 “Determination of the wrinkle recovery of fabrics- Appearance method”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a48a1b42-15a6-4ffd-b9b1-63e827071c84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.