PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical prediction of thermal performance of an electrocaloric device based on ceramic material

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Numeryczna analiza i optymalizacja chłodzącego urządzenia elektrokalorycznego bazującego na materiałach ceramicznych
Języki publikacji
EN
Abstrakty
EN
The main objective of this work is to efficiency prediction and parameter optimisation of an electrocaloric refrigeration system based on ceramic materials (BaTiO3) and nanofluids (Al2O3, CuO). For this purpose, an electrocaloric device is used and studied. The principle consists in the heating and cooling of the ceramic material under the application and removal of electrical field respectively. The nanoparticles suspended in water increase the heat thermal between solid electrocaloric material and carried fluid, so we have much faster heat exchanges that cause an increase in coefficient of performance (COP) and temperature span; the temperature difference between the cold heat exchanger (CHEX) and the hot heat exchanger (HHEX). Indeed, the performances of these systems are strongly dependent on the interactions between the thermal, the fluidic and the electricity in order to be able to evaluate and optimize these systems in terms of cooling power, and the observation is that there are very few current studies in this area. Finally, a parametric study effected by using the COMSOL Multiphysics identified the characteristic quantities that have a significant influence on thermal behavior in electrocaloric refrigeration systems based nanofluids and ceramic material.
PL
Tematem artykułu jest analiza i optymalizacja systemu chłodzenia bazującego na materiale ceramicznym BaTiO3 i nanocieczy Al2O3, CuO. W tym celu analizowano element elektrokaloryczny I współczynnik wymiany ciepła CCP. Przedstawiono wyniki badań elementu jak I całego systemu chłodzenia.
Rocznik
Strony
38--42
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Electrical engineering department, LREA Laboratory, University of Medea, Algeria
autor
  • Mechanical engineering department, University of Medea, Algeria
  • Electrical engineering department, LREA Laboratory, University of Medea, Algeria
  • Electrical engineering department, LREA Laboratory, University of Medea, Algeria
Bibliografia
  • [1] Ozbolt M., Kitanovski A., Tusek J., Poredo A., Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives, Int. J. Refrig., 40 (2014), 174-188
  • [2] Correia T., Zhang Q., Electrocaloric Materials New Generation of Coolers, Springer., (2014), 1-14
  • [3] Suchaneck G., Pakhomov O., Gerlach G., Electrocaloric cooling, INTECH., (2017), 19–43
  • [4] Scot J.F., Electrocaloric Materials, Cavendish Laboratory: Cambridge University., (2011)
  • [5] Aprea C., Greco A., Maiorino A., Masselli1C., Electrocaloric refrigeration: an innovative, emerging, ecofriendly refrigeration technique, J. Phys.: Conf. Ser., (2017), 012019
  • [6] Bai Y., Han X.,Ding K., Qiao L., Electrocaloric refrigeration cycles with large cooling capacity in BaTiO3 ceramics near room temperature, Energy Technology., (2016), 00456
  • [7] Chiba Y., Smaili A., Sari O., Enhancements of thermal performances of an active magnetic refrigeration device based on nanofluids, Mechanika., (2017), 31-38.
  • [8] Greco A., Aprea C., Maiorino A., Masselli C., On the Utilization of Nanofluids as Secondary Fluid for Heat Transfer in a Magnetocaloric Cooler, IJES., (2019), 52-58.
  • [9] Dhaiban H., Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using Al2O3 Nanofluids, Eng. J.,(2016),98-115
  • [10] Pasha K., Controlling the Nusselt Number in a TiO2/R134a Nano-refrigerant System, IJHT., (2019), 179-187.
  • [11] Mugica I., Roy S., Poncet S,, Bouchard j., Nesreddine H., Exergy Analysis of a Parallel-Plate Active Magnetic Regenerator with Nanofluids , Entropy., (2017), 19-464
  • [12] Hernandez D.C., Nieto-London C., Zapata-Benabithe Z., Analysis of working nanofluids for a refrigeration system , DYNA., (2016), 176-183
  • [13] Pak B.C., Cho Y.I., hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp Heat Transfer., (1998), 151-170
  • [14] Aprea C., Greco A., Maiorino A., Masselli C., A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration, IJHT.,(2017), 225-234
  • [15] Yang B., Kai D., Guang-Ping Z., San-Qiang S., Liejie Q., Dong G., The Electrocaloric Effect in BaTiO3 Thick Film Multilayer Structure at High Electric Field, Key Engineering Materials., (2012), 1304-1307
  • [16] AVSEC J., VIRTIČ P., NATERER G., Nanofluidand and ferrofluid slip flow in rectangular and circular microchannels and minichannels,PRZEGLĄD LEKTROTECHNICZNY., (2011),5-8
  • [17] Valant M., Electrocaloric materials for future solid-state refrigeration technologies, Progress in materials science., (2012), 980-1009
  • [18] Melvin M., Vopson., The multicaloric effect in multiferroic materials, Solid State Communications., (2012), 2067-2070
  • [19] Moya X., Taulats E.S., Crossley S., Mathur N.D., Giant electrocaloric strength in single-crystal BaTiO3, Advanced materials., (2013), 1360–1365.
  • [20] Xie1 Z., Sebald G., Crossley S., Guyomar D., Comparison of caloric effects in view of application, Materials science., (2016) v2
  • [21] Ju Y.S., Solid-state refrigeration based on the electrocaloric effect for electronics cooling. J. Electron. Packag. (2010), 041004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4870b1d-e28e-4ead-816b-e57e1237d22b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.