PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Amounts of Water Adsorbed to the Surface of Clay Minerals at the Plastic Limit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a study on the amount of water associated with the solid phase of the clay water system at the plastic limit. Two model monomineral clays, namely kaolinite, and montmorillonite, were used in the study. The latter was obtained by gravitational sedimentation of Na-bentonite (Wyoming). The calculated mean number of water molecule layers on the external surface of montmorillonite was 14.4, and water in interlayer spaces constituted 0.3 of the water mass at the plastic limit. The number of water layers on the external surface of kaolinite particles was 63, which was related to the higher density of the surface electrical charge of kaolinite compared to that of montmorillonite. The calculations were made on the basis of the external surface area of clays and the basal spacing at the plastic limit measured by an X-ray diffraction test. The external surface area of clays was estimated by measuring sorption at a relative humidity p/p0 = 0.5.
Słowa kluczowe
Rocznik
Strony
155--162
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering and Architecture, UTP University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
  • The State University of Applied Sciences in Elbląg, ul. Grunwaldzka 137, 82-300 Elbląg, Poland
Bibliografia
  • Carlson L. (2004) Bentonite Mineralogy. Posiva Oy. Working Report 2004-2, p. 105.
  • Chełmicki W. (2002) Water, Resources, Degradation, Protection (in Polish), PWN Publishing House, Warsaw, p. 305.
  • Di Maio C., Fenelli G. B. (1994) Residual strength of kaolin and bentonite: the influence of their constituent pore fluid, Geotechnique, 44 (4), 217–226.
  • Dolinar B. (2012) A simplified method of determining the external surface area of non-swelling fine grained soils, Applied Clay Science, 64, 43–37.
  • Dolinar B., Trauner L. (2004) Liquid limit and specific surface of clay particles, Geotech. Testing J., 27, 580–584.
  • Dolinar B., Trauner L. (2005) Impact of soil composition on fall cone test results, J. Geotech. Geoenviron. Eng., 131 (1), 126–130.
  • Grabowska-Olszewska B. (2003) Modelling physical properties of mixture of clays: example of two-component mixture of kaolinite and montmorillonite, Applied Clay Science, 22, 251–259.
  • Liu Tao, Tian Xiao-Feng, Zhao Yu, Gao Tao (2010) Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation, Chinese Physical B., 19 (10), 109101-1–109101-7.
  • Locat J., Lefebre G., Ballivy G. (1984) Mineralogy, Chemistry and Property Interrelationships of Some Sensitive Clays from Eastern Canada, Canadian Geotechnical Journal, 21, 530–540.
  • Martin R. T. (1960)Water vapor sorption on kaolinite: Entropy of adsorption, Clays and Clay Minerals, 8, 102–114.
  • Meunier A. (2005) Clays, Springer, Berlin-Heidelberg-New York.
  • Muhunthan B. (1991) Liquid limit and surface area of clays, Geotechnique, 41 (1), 135–138.
  • Olchawa A. (1994) Determination of surface area of clays from desorption water content (in Polish), Wiadomości Instytutu Melioracji i Użytków Zielonych, 18 (1), 105–118.
  • Olchawa A., Gorączko A. (2012) The relationship between the liquid limit of clayey soils, external specific surface area and the composition of exchangeable cations, Journal of Water and Land Development, 17, 84–88.
  • Paszyc-Stępkowska E. (1960) The influence of exchangable ions on the physical and mechanical properties of bentonite, Archives of Hydroengineering, 7 (2), 144–213.
  • Shang J. Q. (1994) Quantitative determination of potential distribution in Stern-Gouy double layer model, Canadian Geotech. J., 31, 624–636.
  • Stępkowska E. T. (1977) Sorption test and its possible applications in various measurements (in Polish), Archives of Hydro-Engineering, 24 (3) 411–420.
  • Sridharan A. (2002) Engineering behaviour of clays. Influence of mineralogy. Chemo-mechanical coupling in clays. From nano-scale to engineering applications, [in:] Di Maio & Loret, Swets & Zeittinger Lisse, ISBN 90 5809 384 0.
  • Sridharan A., Rao G. V. (1975) Mechanisms controlling the liquid limit of clays, Proceedings of the Conference on Soil Mechanics and Foundation Engineering, Istanbul, Vol. 1, 65–74.
  • Sridharan A., Rao S. M., Murthy N. S. (1986) Liquid limit of montmorillonite soils, Geotechnical Testing Journal, 9 (3), 156–159.
  • Sridharan A., Rao S. M., Murthy N. S. (1988) Liquid limit of kaolinic soils, Geotechnique, 38 (2), 191–198.
  • White W. Arthur (1949) Atterberg plastic limits of clay minerals. Report of Investigations No 144, Printed by Authority of State of Illinois, Urbana.
  • White W. Arthur (1958) Water sorption of homoionic montmorilonite. Report of Investigations 2008, Illinois State Geological Survey, Printed by Authority of State of Illinois, Urbana.
  • Yan Li, XiaojunWang, JuanfangWang (2012) Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions, Journal of Thermal Analysis and Calorimetry, 110, 1999–1206.
  • Yong R. N., Warkentin B. P. (1966) Introduction to Soil Behaviour, Macmillan, New York.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a48673b8-dee9-4a3a-9e24-a821bdd7e441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.