PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Response of thermoelastic micropolar cubic crystal under dynamic load at an interface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode analysis has been applied to obtain the exact expressions for components of normal displacement, temperature distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic symmetry. The effects of anisotropy, micropolarity and thermoelasticity on the above components have been depicted graphically.
Rocznik
Strony
5--23
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
  • Department of Applied Sciences and Humanities Maharishi Markandeshwar University Sadopur, Ambala City, Haryana (INDIA)
  • Department of Applied Sciences D.A.V Institute of Engineering and Technology, Kabir Nagar, Jalandhar, Punjab (INDIA)
autor
  • Department of Applied Sciences, Guru Nanak DevJi Engineering College Ludhiana, Punjab (INDIA)
Bibliografia
  • [1] Eringen A.C. and Suhubi E.S. (1964): Nonlinear theory of simple micro-elastic solids I. – International Journal of Engineering Science, vol.2, pp.189-203.
  • [2] Eringen A.C. and Suhubi E.S. (1964): Nonlinear theory of simple micro-elastic solids II. – International Journal of Engineering Science, vol.2, pp.389-404.
  • [3] Eringen A.C. (1965): Linear theory of micropolar elasticity. – ONR Technical report No. 29, School of Aeronautics, Aeronautics and Engineering Science, Purdue University.
  • [4] Eringen A.C. (1966): A unified theory of thermomechanical materials. – International Journal of Engineering Science, vol.4, pp.179–202.
  • [5] Eringen A.C. (1984): Plane waves in non-local micropolar elasticity. – International Journal of Engineering Science, vol.22, pp.1113–1121.
  • [6] Nowacki W. (1966): Couple stresses in the theory of thermoelasticity III. – Bulletin of the Polish Academy of Sciences Techanical Sciences, vol.8, pp.801-809.
  • [7] Eringen A.C. (1970): Foundation of micropolar thermoelasticity, Courses and Lectures. – No.23, CISM, Udine, Springer-Verlag, Vienna and New York.
  • [8] Tauchert T.R., Claus W.D. and Ariman T. (1968): The linear theory of micropolar thermoelasticity. – International Journal of Engineering Science, vol.6, pp.36-47.
  • [9] Tauchert T.R. (1971): Thermal stresses in micropolar elastic solids. – Acta Mechanica, vol.11, pp.155-169.
  • [10] Nowacki W. and Olszak W. (1974): Micropolar thermoelasticity. – in W.Nowacki and Olszak(eds.), Micropolar thermoelasticity, CISM Courses and Lectures, No.151, Udine, Springer-Verlag, Vienna.
  • [11] Dhaliwal R.S. and Singh A. (1987): Micropolar thermoelasticity. – Chapter 5, in R.B. Hetnarski(ed.), Thermal Stresses II, Mechanical and Mathematical Methods, ser. 2, North-Holland, Amsterdam.
  • [12] Dhaliwal R.S. and Singh A. (1980): Dynamic Coupled Thermoelasticity. – Hindustan Publication Corporation, New Delhi, India 726.
  • [13] Eringen A.C and Kafadar C.B. (1976): Continum Physics. – New York: Academic Press, 4.
  • [14] Minagawa S., Arakawa K. and Yamada M. (1981): Dispersion curves for waves in a cubic micropolar medium with reference to estimations of the material constants for diamond. – Bulletin of the JSME, vol.24 (187), pp.22–28.
  • [15] Kumar R. and Ailawalia P. (2006): Time harmonic sources at micropolar thermoelastic medium possessing cubic symmetry with one relaxation time. – European Journal of Mechanics A/Solids, vol.25, pp.271–282.
  • [16] Kumar R. and Ailawalia P. (2007): Moving load response in micropolar thermoelastic medium without energy dissipation possessing cubic symmetry. – International Journal of Solids and Structures, vol.44, pp.4068–4078.
  • [17] Kumar R. and Ailawalia P. (2007): Mechanical/thermal sources at thermoelastic micropolar medium without energy dissipation possessing cubic symmetry. – International Journal of Thermophysics, vol.28, No.1, pp.342-367.
  • [18] Kumar R. and Ailawalia P. (2008): Deformations in micropolar thermoelastic medium possessing cubic symmetry due to inclined loads. – Mechanics of Advanced Materials and Structures, vol.15, No.1, pp.64-76.
  • [19] Ailawalia P. and Kumar R. (2010): Time harmonic inclined load in micropolar thermoelastic medium possessing cubic symmetry with one relaxation time. – Tamkang Journal of Science and Engineering, vol.13, No.2, pp.117-126.
  • [20] Othman M.I.A., Lotfy Kh. and Farouk R.M. (2009): Effects of magnetic field and inclined load in micropolar thermoelastic medium possessing cubic symmetry under three theories. – International Journal of Industrial Mathematics, vol.1, No.2, pp.87-104.
  • [21] Kumar R. and Partap G. (2010): Elastodynamic behavior of axisymmetric vibrations in micropolar thermoelastic cubic crystal plate. – Mechanics of Advanced Materials and Structures, vol.17, No.2, pp.99-107.
  • [22] Lotfy Kh. and Yahia N. (2013): Effect of magnetic field and a mode-I crack 3D problem in micropolar thermoelastic cubic medium possessing under three theories. – Journal of Solid Mechanics, vol.5, No.3, pp.253-269.
  • [23] Abbas I.A., Kumar R. and Rani L. (2015): Thermoelastic interaction in a thermally conducting cubic crystal subjected to ramp-type heating. – Applied Mathematics and Computation 254, pp.360–369.
  • [24] Grot R.A. (1969): Thermodynamics of a continuum with microstructure. – International Journal of Engineering Science, vol.7, pp.801–814.
  • [25] Riha P. (1976) On the micro-continuum model of heat conduction in materials with inner struct. – International Journal of Engineering Science, vol.14, pp.529–535.
  • [26] Iesan D. and Quintanilla R. (2000): On a theory of thermoelasticity with microtemperatures. – Journal of Thermal Stresses, vol.23, pp.199–215.
  • [27] Iesan D. (2001): On a theory of micromorphic elastic solids with microtemperatures. – Journal of Thermal Stresses, vol.24, pp.737–752.
  • [28] Casas P.S. and Quintanilla R. (2005): Exponential stability in thermoelasticity with microtemperatures. – International Journal of Engineering Science, vol.43, pp.33–47.
  • [29] Scalia A. and Svanadze M. (2006): On the representation of solutions of the theory of thermoelasticity with microtemperatures. – Journal of Thermal Stresses, vol.29, pp.849–863.
  • [30] Iesan D. (2006): Thermoelasticity of bodies with microstructure and microtemperatures. – International Journal of Solids and Structures, vol.43, pp.3414–3427.
  • [31] Aouadi M. (2008): Some theorems in the isotropic theory of microstretch thermoelasticity with microtemperatures. – Journal of Thermal Stresses, vol.31, pp.649–662.
  • [32] Iesan D. and Quintanilla R. (2009): On thermoelastic bodies with inner structure and microtemperatures. – Journal of Mathematical Analysis and Applications, vol.354, pp.12–23.
  • [33] Scalia A., Svanadze M. and Tracinà R. (2010): Basic theorems in the equilibrium theory of thermo-elasticity with microtemperatures. – Journal of Thermal Stresses, vol.33, No.8, pp.721–753.
  • [34] Quintanilla R. (2011): On growth and continous dependence in thermoelasticity with microtemperatures. – Journal of Thermal Stresses, vol.34, No.9, pp.911-922.
  • [35] Steeb H., Singh J. and Tomar S.K. (2013): Time harmonic waves in thermoelastic material with microtemperatures. – Mechanics Research Communication, vol.48, pp.8–18.
  • [36] Chirita S., Ciarletta M. and D’Apice C. (2013): On the theory of thermoelasticity with microtemperatures. – Journal of Mathematical Analysis and Applications, vol.397, pp.349–361.
  • [37] Kumar R. and Kaur M. (2014): Reflection and refraction of plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. – Archives of Applied Mechanics, vol.84, pp.571–590.
  • [38] Ciarletta M., Passarella F and Tibullo V. (2015): Plane harmonic waves in strongly elliptic thermoelastic materiale with microtemperatures. – Journal of Mathematical Analysis and Applications, vol.424, pp.1186-1197.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4850880-2b8a-48b1-a6de-e13cf1dd3a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.