PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Temperature Distribution Analysis on the Surface of the Radiator: Infrared Camera and Thermocouples Results Comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experiments conducted in a didactic laboratory of the Kielce University of Technology involved temperature distribution measurements on the outer surface of a steel radiator using a thermal imaging camera and thermocouples to compare both investigation methods. The research included registering the parameters for a specific period for each of the four different medium flows. Graphs present the results with the division of the radiator into eight thermal fields. The results present the differences in temperatures between 1.78°C to 3.65°C. The non-contact method with an infrared camera seems more accurate since it is precise for surface temperature measurement.
Słowa kluczowe
Rocznik
Tom
Strony
37--44
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Building Physics and Renewable Energy, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
  • Department of Building Physics and Renewable Energy, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
Bibliografia
  • Ali, A.H.H., Morsy, M.G. (2010). Energy efficiency and indoor thermal perception: a comparative study between radiant panel and portable convective heaters, Energy Efficiency, 3, 283-301. https://doi.org/10.1007/s12053-010-9077-3
  • ASHRAE-55, (2013). Thermal Environment Conditions for Human Occupancy, ASHRAE.
  • Bertolin, C., Luciani, A., Valisi, L., Camuffo, D., Landi, A., Del Curto, D. (2015). Laboratory tests for the evaluation of the heat distribution efficiency of the Friendly-Heating heaters, Energy and Buildings, 107, 319-328. http://dx.doi.org/10.1016/j.enbuild.2015.08.003.
  • Causone, F., Baldin, F., Olesen, B. W., Corgnati, S.P. (2010). Floor heating and cooling combined with displacement ventilation: possibilities and limitations. Energy Building, 42(12), 2338-2352.
  • Chatys, R., Orman, Ł.J. (2017). Technology and properties of layered composites as coatings for heat transfer enhancement. Mechanics of Composite Materials, 53(3), 351-360.
  • D'Ambrosio Alfano F.R., Olesen, B.W., Palella, B.I., Riccio G. (2014). Thermal comfort: design and assessment for energy saving. Energy and Building, 81, 326-336. http://dx.doi.org/10.1016/j.enbuild.2014.06.033
  • Dąbek, L., Kapjor, A., Orman, Ł.J. (2019). Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces. Mechanics & Industry, 20, 701. https://doi.org/10.1051/meca/2019068
  • Du, C., Liu, H., Li, C., Xiong, J., Li, B., Li, G., Xi, Z. (2020). Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments. Building and Environment, 171, 106662. https://doi.org/10.1016/j.buildenv.2020.106662
  • Dudkiewicz, E., Jezowiecki, J. (2011). The influence of orientation of a gas-fired direct radiant heater on radiant temperature distribution at a work station. Energy and Buildings, 43, 1222-123.
  • Dudkiewicz, E., Szałański, P. (2019). A review of heat recovery possibility in flue gases discharge system of gas radiant heaters. E3S Web of Conferences, 116, 00017. https://doi.org/10.1051/e3sconf/201911600017
  • Karimi, M.S., Fazelpour, F., Rosen, M.A., Shams, M. (2019). Comparative study of solar-powered underfloor heating system performance in distinctive climates. Renewable Energy, 130, 524-535.
  • Karmann, C., Stefano, S., Bauman, F. (2017). Thermal comfort in buildings using radiant vs. all-air systems: a critical literature review. Building Environment, 111, 123-131. http://dx.doi.org/10.1016/j.buildenv.2016.10.020
  • Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Środowiska, 21(2), 1253-1262.
  • Légera, J., Rousse, D.R., Le Borgne, K., Lassue, S. (2018). Comparing electric heating systems at equal thermal comfort: An experimental investigation. Building and Environment, 128, 161-169. https://doi.org/10.1016/j.buildenv.2017.11.035
  • Lin, B., Wang, Z., Sun, H., Zhu, Y., Ouyang, Q. (2016). Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings. Building Environment, 106, 91-102. http://dx.doi.org/10.1016/j.buildenv.2016.06.015
  • Magni, M., Campana, J.P., Ochs, F., Morini, G.L. (2019). Numerical investigation of the influence of heat emitters on the local thermal comfort in a room. Building Simulation, 12, 395-410. https://doi.org/10.1007/s12273-019-0506-8
  • Mikhailenko, S.A., Miroshnichenko, I.V., Sheremet, M.A. (2021). Thermal radiation and natural convection in a large-scale enclosure heated from below: Building application, Building Simulations, 14, 681-69. https://doi.org/10.1007/s12273-020-0668-4
  • Miroshnichenko, I.V., Sheremet, M.A. (2018). Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review, Renewable and Sustainable Energy Reviews, 82, 40-59. http://dx.doi.org/10.1016/j.rser.2017.09.005
  • Orłowska, M. (2020). Experimental Research of Temperature Distribution on the Surface of the Front Plate, of a Flat Plate Heat Exchanger. Rocznik Ochrona Środowiska, 22, 256-264.
  • Pavlenko, A.M., Koshlak, H. (2021). Application of thermal and cavitation effects for heat and mass transfer process intensification in multi-component liquid media. Energies, 14(23), 7996. https://doi.org/10.3390/en14237996
  • Samek, L., De Maeyer-Worobiec A., Spolnik, Z., Bencs, L., Kontozova, V., Bratasz, Ł., Roman, Kozłowski R., Van Grieken, R. (2007). The impact of electric overhead radiant heating on the indoor environment of historic churches. Journal of Cultural Heritage, 8, 361-369. https://doi.org/10.1016/j.culher.2007.03.006
  • Stokowiec, K., Kotrys-Działak, D., Jastrzębska, P. (2022). Verification of the Fanger model with field experimental data. Journal of Physics: Conference Series, 2339, 012027. https://doi.org/10.1088/1742-6596/2339/1/012027
  • Stokoiwec K, Sobura S. (2022). Hand-held and UAV camera comparison in building thermal inspection process. Journal of Physics: Conference Series, 2339, 012017. https://doi.org/10.1088/1742-6596/2339/1/012017
  • Sun, S., Xing, X., Wang, J., Sun, X., Zhao, C. (2022). Preheating time estimation in intermittent heating with hot-water radiators by considering model uncertainties, Building and Environment, 226, 109734.https://doi.org/10.1016/j.buildenv.2022.109734
  • Wang, Y., Meng, X., Yang, X., Liu, J. (2014). Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation. Energy and Buildings, 75, 394-401. http://dx.doi.org/10.1016/j.enbuild.2014.02.031
  • Zhang, X., Yu, J., Su, G., Yao, Z., Hao, P., He, F. (2016). Statistical analysis of turbulent thermal free convection over a small heat source in a large enclosed cavity. Applied Thermal Engineering, 93, 446-455. http://dx.doi.org/10.1016/j.applthermaleng.2015.10.011
  • Wciślik, S., 2017, Energy efficiency and economic analysis of the thermomodernization of forest lodges in the Świętokrzyski National Park. EPJ Web of Conferences, 143, 02144. https://doi.org/10.1051/epjconf/201714302144
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a483cd44-513d-416d-8c66-8ce691c2cd47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.