Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Adopting mode division multiplex (MDM) technology as the next frontier for optical fiber communication and on-chip optical interconnection systems is becoming very promising because of those remarkable experimental results based on MDM technology to enhance capacity of optical transmission and, hence, making MDM technology an attractive research field. Consequently, in recent years the large number of new optical devices used to control modes, for example, mode converters, mode filters, mode (de)multiplexers, and mode-selective switches, have been developed for MDM applications. This paper presents a review on the recent advances on mode converters, a key component usually used to convert a fundamental mode into a selected high-order mode, and vice versa, at the transmitting and receiving ends in the MDM transmission system. This review focuses on the mode converters based on planar light wave circuit (PLC) technology and various PLC-based mode converters applied to the above two systems and realized with different materials, structures, and technologies. The basic principles and performances of these mode converters are summarized.
Wydawca
Czasopismo
Rocznik
Tom
Strony
13--32
Opis fizyczny
Bibliogr. 87 poz., tab., wykr.
Twórcy
autor
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
autor
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
Bibliografia
- [1] Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662-701 (2010). https://doi.org/10.1109/JLT.2009.2039464
- [2] CISCO: Cisco Visual Netwroking Index: Forecast and Trends, 2017-2022 White Paper [Online]. Available at: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed: 19th September 2020).
- [3] Agrell, E. et al. Roadmap of optical communications. J. Opt. 18, 063002 (2016). http://dx.doi.org/10.1088/2040-8978/18/6/063002
- [4] Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3-10 (2010). https://doi.org/10.1002/bltj.20400
- [5] Yu, J. & Zhang, J. Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65-76 (2016). http://dx.doi.org/10.1016/j.dcan.2016.03.002
- [6] Abbas, H. S. & Gregory, M. A. The next generation of passive optical networks: A review. J. Netw. Comput. Appl. 67, 53-74 (2016). http://dx.doi.org/10.1016/j.jnca.2016.02.015
- [7] Sillard, P. Next-generation fibers for space-division-multiplexed transmissions. J. Lightwave Technol. 33, 1092-1099 (2015). https://doi.org/10.1109/JLT.2014.2371134
- [8] Richardson, D., Fini, J. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354-362 (2013). https://doi.org/10.1038/nphoton.2013.94
- [9] Klaus, W. et al. Advanced space division multiplexing technologies for optical networks. J. Opt. Commun. Netw. 9, C1-C11 (2017). https://doi.org/10.1364/JOCN.9.0000C1
- [10] Nakazawa, M. Exabit optical communication explored using 3M scheme. Jap. J. Appl. Phys. 53, 08MA01 (2014). http://dx.doi.org/10.7567/JJAP.53.08MA01
- [11] Winzer, P. J. Optical networking beyond WDM. IEEE Photonics J. 4, 647-651 (2012). https://doi.org/10.1109/JPHOT.2012.2189379
- [12] Chiang, K. S. Polymer optical waveguide devices for mode-division-multiplexing applications. Proc. SPIE 10242, Integrated Optics: Physics and Simulations III, 102420R (2017). https://doi.org/10.1117/12.2265275
- [13] Sabitu, R., Khan, N. & Malekmohammadi, A. Recent progress in optical devices for mode division multiplex transmission system. Opto-Electron. Review 27, 252-267 (2019). https://doi.org/10.1016/j.opelre.2019.07.001
- [14] Ryf, R., Fontaine, N. K., Guan, B., Huang, B. & Tkach, R. W. 305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre. in The European Conference on Optical Communication (ECOC), 1-3 (2014).
- [15] Hayashi, T. et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35, 748-754 (2017). https://doi.org/10.1109/ JLT.2016.2617894
- [16] Soma, D. et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol. 36, 1362-1368 (2018). https://doi.org/10.1364/JLT.36.001362
- [17] Van Uden, R. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865-870 (2014). https://doi.org/10.1038/nphoton.2014.243
- [18] Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283-311 (2014). https://doi.org/10.1515/nanoph-2013-0021
- [19] Luo, L.-W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1-7 (2014). https://doi.org/10.1038/ncomms4069
- [20] Hsu, Y. et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 30, 1052-1055 (2018). https://doi.org/10.1109/ LPT.2018.2829508
- [21] Zhang, W., Ghorbani, H., Shao, T. & Yao, J. On-Chip 4×10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 26, 1-8 (2020). https://doi.org/10.1109/JSTQE.2020.2964388
- [22] Huang, Y., Xu, G. & Ho, S.-T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 18, 2281-2283 (2006). https://doi.org/10.1109/LPT.2006.884886
- [23] Oner, B., Üstün, K., Kurt, H., Okyay, A. K. & Turhan-Sayan, G. Large bandwidth mode order converter by differential waveguides. Opt. Express 23, 3186-3195 (2015). https://doi.org/10.1364/OE.23.003186
- [24] Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K. & Koshiba, M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421-2426 (2012). https://doi.org/10.1109/JLT.2012.2199961
- [25] Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J. & Wang, W. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40, 518-521 (2015). http://dx.doi.org/10.1364/OL.40.000518
- [26] Guo, F. et al. An MMI-based mode (DE) MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol. Lett. 28, 2443-2446 (2016). https://doi.org/10.1109/LPT.2016.2599934
- [27] Chack, D., Hassan, S. & Qasim, M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt. 59, 3652-3659 (2020). https://doi.org/10.1364/AO.390085
- [28] Linh, H. D. T., Dung, T. C., Tanizawa, K., Thang, D. D. & Hung, N. T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1× 4 Y-Junction and 4× 4 MMI Couplers. IEEE J. Sel. Top. Quantum Electron. 26, 1-8 (2019). https://doi.org/10.1109/JSTQE.2019.2937169
- [29] González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 1-10 (2018). https://doi.org/10.1109/JPHOT.2018.2819364
- [30] Leuthold, J., Eckner, J., Gamper, E., Besse, P. A. & Melchior, H. Multimode interference couplers for the conversion and combining of Zero- and First-Order modes. J. Lightwave Technol. 16, 1228-1239 (1998). https://doi.org/10.1109/50.701401
- [31] Guo, F. et al.Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates. Chin. Phys. Lett. 33, 024203 (2016). http://dx.doi.org/10.1088/0256-307X/33/2/024203
- [32] Chen, H. -T. & Webb, K. J. Silicon-on-insulator irregular waveguide mode converters. Opt. Lett. 31, 2145-2147 (2006). https://doi.org/10.1364/OL.31.002145
- [33] Chen, D. et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 23, 11152-11159 (2015). https://doi.org/10.1364/OE.23.011152
- [34] Chen, Z. Y. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and Terabit WDM-MDM system demonstration. J. Lightwave Technol. 36, 2757-2766 (2018). https://dx.doi.org/10.1109/JLT.2018.2818793
- [35] Zhu, D. et al. Design of compact TE-polarized mode-order converter in silicon waveguide with high refractive index material. IEEE Photonics J. 10, 1-7 (2018). https://doi.org/10.1109/ JPHOT.2018.2883209
- [36] Abu-Elmaaty, B. E., Sayed, M. S., Pokharel, R. K. & Shalaby, H. M. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 58, 1763-1771 (2019). https://doi.org/10.1364/AO.58.001763
- [37] Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434-34441 (2019). https://doi.org/10.1364/OE.27.034434
- [38] Ye, W., Yuan, X., Gao, Y. & Liu, J. Design of broadband silicon-waveguide mode-order converter and polarization rotator with small footprints. Opt. Express 25, 33176-33183 (2017). https://doi.org/10.1364/OE.25.033176
- [39] Liu, L. et al. Design of a compact silicon-based TM-polarized mode-order converter based on shallowly etched structures. Appl. Opt. 58, 9075-9081 (2019). https://doi.org/10.1364/AO.58.009075
- [40] Hao, L. et al. Efficient TE-polarized mode-order converter based on high-index-contrast polygonal slot in a silicon-on-insulator waveguide. IEEE Photonics J. 11, 1-10 (2019). https://doi.org/10.1109/JPHOT.2019.2907640
- [41] Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). https://doi.org/10.1364/OL.391748
- [42] Jia, H. et al. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 44, 4179–4182 (2019). https://doi.org/ 10.1364/OL.44.004179
- [43] Zhang, M. R., Chen, K. X., Jin, W. & Chiang, K. S. Electro-optic mode switch based on lithium-niobate Mach-Zehnder interferometer. Appl. Opt. 55, 4418-4422 (2016). https://doi.org/10.1364/AO.55.004418
- [44] Hanzawa, N. et al. Two-mode PLC-based mode multi/ demultiplexer for mode and wavelength division multiplexed transmission. Opt. Express 21, 25752-25760 (2013). https://doi.org/10.1364/OE.21.025752
- [45] Saitoh, K. et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 22, 19117-19130 (2014). https://doi.org/10.1364/OE.22.019117
- [46] Hanzawa, N. et al. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22, 29321-29329 (2014). https://doi.org/10.1364/OE.22.029321
- [47] Hanzawa, N. et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip. J. Lightwave Technol. 33, 1161–1165 (2015). https://doi.org/10.1109/JLT.2014.2378281
- [48] Saitoh, K. et al. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 35, 80-92 (2017). https://doi.org/10.1016/j.yofte.2016.08.002
- [49] Riesen, N., Gross, S., Love, J. D. & Withford, M. J. Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855-29861 (2014). https://doi.org/10.1364/OE.22.029855
- [50] Dong, J. L., Chiang, K. S. & Jin, W. Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33, 4580-4588 (2015). https://doi.org/10.1109/JLT.2015.2478961
- [51] Wei, F. K., Chen, K. X. & Chiang, K. S. Mode conversion with vertical polymer-waveguide directional coupler. in Asia Communication and Photonics Conference, AF1G.3 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.3
- [52] Huang, Q. D., Wu, Y. F., Jin, W. & Chiang, K. S. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol. 36, 2903-2911 (2018). https://dx.doi.org/10.1109/JLT.2018.2829143
- [53] Zhao, W. K., Chen, K. X., Wu, J. Y. & Chiang, K. S. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing. IEEE Photonics J. 9, 1-9 (2017). https://doi.org/10.1109/JPHOT.2017.2731046
- [54] Zhao, W. K., Chen, K. X. & Wu, J. Y. Broadband mode multiplexer formed with non-planar tapered directional couplers. IEEE Photonics Technol. Lett. 31, 169-172 (2018). https://doi.org/10.1109/LPT.2018.2887352
- [55] Yin, M., Deng, Q., Li, Y., Wang, X. & Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic-dielectric coupling. Appl. Opt. 53, 6175-6180 (2014). https://doi.org/10.1364/AO.53.006175
- [56] Wang, J., Chen, P., Chen, S., Shi, Y. & Dai, D. X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 22, 12799-12807 (2014). https://doi.org/10.1364/OE.22.012799
- [57] Garcia-Rodriguez, D., Corral, J. L. Griol, A. & Llorente, R. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm. Opt. Lett. 42, 1221-1224 (2017). https://doi.org/10.1364/OL.42.001221
- [58] Luo, L.-W., Gabrielli, L. H. & Lipson, M. On-chip mode-division multiplexer. in Conference on Lasers and Electro-Optics (CLEO 2013) CTh1C.6. (2013). https://doi.org/10.1364/CLEO_SI.2013. CTh1C.6
- [59] Yu, Y., Ye, M. & Fu, S. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photonics Technol. Lett. 27, 1957-1960 (2015). https://doi.org/10.1109/LPT.2015.2448076
- [60] Yang, Y., Chen, K. X., Jin, W. & Chiang, K. S. Widely wavelength-tunable mode converter based on polymer waveguide grating. IEEE Photonics Technol. Lett. 27, 1985-1988 (2015). https://doi.org/10.1109/LPT.2015.2448793
- [61] Jin, W. & Chiang, K. S. Mode converter with sidewall-corrugated polymer waveguide grating. in Opto-Electronics Communication Conference (OECC2015), 1-3 (2015). https://doi.org/10.1109/OECC.2015.7340081
- [62] Jin, W. & Chiang, K. S. Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41, 3130-3133 (2016). https://doi.org/10.1364/OL.41.003130
- [63] Wang, W., Wu, J. Y., Chen, K. X., Jin, W. & Chiang, K. S. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Opt. Express 25, 14341-14350 (2017). https://doi.org/10.1364/OE.25.014341
- [64] Zhao, W. K., Chen, K. X. & Wu, J. Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion. App. Phys. B 125, 177 (2019). https://doi.org/10.1007/s00340-019-7290-0
- [65] Jin, W. & Chiang, K. S. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt. Express 26, 15289-15299 (2018). https://doi.org/10.1364/OE.26.015289
- [66] Castro, J. M. et al. Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 13, 4180-4184 (2005). https://doi.org/10.1364/OPEX.13.004180
- [67] Xiao, R. et al. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 27, 1941-1957 (2019). https://doi.org/10.1364/OE.27.001941
- [68] Wang, H. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 7, 1801191 (2019). https://doi.org/10.1002/adom.201801191
- [69] Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617-27631 (2014). https://doi.org/10.1364/OE.22.027617
- [70] Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956-7961 (2016). https://doi.org/10.1021/acs.nanolett.6b04264
- [71] Qiu, H. et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21, 17904-17911 (2013). https://doi.org/10.1364/OE.21.017904
- [72] Zhao, W. K., Feng, J., Chen, K. X. & Chiang, K. S. Reconfigurable broadband mode (de) multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Opt. Lett. 43, 2082-2085 (2018). https://doi.org/10.1364/OL.43.002082
- [73] Zi, X. Z., Wang, L. F., Chen, K. X. & Chiang, K. S. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photonics Technol. Lett. 30, 618-621 (2018). https://doi.org/10.1109/LPT.2018.2808466
- [74] Jin, W. & Chiang, K. S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett. 40, 237-240 (2015). https://doi.org/10.1364/OL.40.000237
- [75] Jin, W. & Chiang, K. S. Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Top. Quantum Electron. 26, 1-6 (2020). https://doi.org/10.1109/ JSTQE.2020.2969568
- [76] Zhang, M. R., Ai, W., Chen, K. X., Jin, W. & Chiang, K. S. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photonics Technol. Lett. 30, 1764-1767 (2018). https://doi.org/10.1109/LPT.2018.2868834
- [77] Lee, B.-T. & Shin, S.-Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660-1662 (2003). https://doi.org/10.1364/OL.28.001660
- [78] Low, A. L., Yong, Y. S., You, A. H., Chien, S. F. & Teo, C. F. A five-order mode converter for multimode waveguide. IEEE Photonics Technol. Lett. 16, 1673-1675 (2004). https://doi.org/10.1109/LPT.2004.828512
- [79] Riesen, N. & Love, J. D. Design of mode-sorting asymmetric Y-junctions. App. Opt. 51, 2778-2783 (2012). https://doi.org/10.1364/AO.51.002778
- [80] Driscoll, J. B. et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854-1856 (2013). https://doi.org/10.1364/OL.38.001854
- [81] Feng, J., Chen, K. X., Ren, K. Y. & Chiang, K. S. Mode (de) multiplexer based on polymer-waveguide asymmetric Y-junction. in Asia Communication and Photonics Conference AF1G.5 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.5
- [82] Chen, W. W. et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 41, 2851-2854 (2016). https://doi.org/10.1364/OL.41.002851
- [83] Fujisawa, T. et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator. J. Lightwave Technol. 36, 1985-1992 (2018). https://doi.org/10.1109/JLT.2018.2798619
- [84] Gao, Y. et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators. Opt. Commun. 451, 41-45 (2019). https://dx.doi.org/10.1016/j.optcom.2019.06.010
- [85] Watanabe, T. & Kokubun, Y. Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide. IEEE Photonics J. 7, 1-11 (2015). https://doi.org/10.1109/JPHOT.2015.2497234
- [86] Dai, D. X., Tang, Y. B. & Bowers, J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20, 13425-13439 (2012). https://doi.org/10.1364/OE.20.013425
- [87] Dai, D. X. & Mao, M. Mode converter based on an inverse taper for multimode silicon Nanophotonicsic integrated circuits Opt. Express 23, 28376-28388 (2015). https://doi.org/10.1364/ OE.23.028376
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a483094e-42d9-4a7d-a7be-bad652132d46