PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redefining the purpose, goals and methods of disinfection in contemporary water supply systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new concept of disinfection traditionally applied in water treatment systems. The new definition of this process results from the change in its functionality, aims and methods, which guarantee high quality of water supply. The literature review and technical practice demonstrate a demand for disinfection to act as a functional element of the integrated water distribution system and an active intermediate link between the technology of water treatment and the water distribution network. The presented concept of a disinfection process enables evaluation of water treatment, increases its effectiveness in integrated water treatment systems. Such defined disinfection addresses water conservation and its biological stability within the water supply network. The presented here new concept of disinfection assigns its new role and function in the integrated water distribution system. The controlling and diagnostic function of the disinfection defined in the paper provides a transparent and comprehensive method, with considerable application in experimental design, as well as practical solutions for integrated water distribution systems.
Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Poznan University of Technology, Institute of Environmental Engineering and Building Installations
  • Poznan University of Technology, Institute of Environmental Engineering and Building Installations
  • Poznan University of Technology, Institute of Environmental Engineering and Building Installations
  • Poznan University of Technology, Institute of Environmental Engineering and Building Installations
  • Poznan University of Technology, Institute of Environmental Engineering and Building Installations
Bibliografia
  • 1. Banihashemi A., Dyke van M.I. & Huck P.M. (2014). Detection of viable bacterial pathogens in a drinking water source using propidium monoazide-quantitative PCR, Journal of Water Supply: Research and Technology - AQUA, Published March 2015, 64, 2, pp. 139-148, DOI: 10.2166/aqua.2014.063.
  • 2. Bellamy W.D., Finch G.R. & Haas C.N. (1998). Integrated disinfection design framework, American Water Works Association Research Foundation, Denver, CO, USA, Report No. 90739.
  • 3. Bellar T.A., Lichtenberg J.J. & Kroner R.C. (1974). The occurrence of organohalides in chlorinated drinking water, Journal AWWA, 66, 12, pp. 703-706.
  • 4. Bodzek M., Konieczny K., Rajca M. (2019). Membranes in water and wastewater disinfection- review, Archives of Environmental Protection 45, 1, pp. 3-18, DOI: 10.1515/aep-2015-0016.
  • 5. Chuang Y.H. & Tung H.H. (2014). The formation kinetics of haloacetonitriles and halonitromethanes during chloramination, Water Science and Technology: Water Supply, 14, 4, pp. 540-546, DOI: 10.2166/ws.2014.005.
  • 6. Costet N., Villanueva C.M., Jaakkola J.J., Kogevinas M., Cantor K.P., King W.D., Lynch C.F., Nieuwenhuijsen M.J. & Cordier S. (2011). Water disinfection by-products and bladder cancer: is there a European specificity? A pooled and meta-analysis of European case-control studies, Occupational and Environmental Medicine, 68, 5, pp. 379-385, DOI: 10.1136/oem.2010.062703.Epub 2011 Mar 9.
  • 7. Dugan N.R., Fox K.R., Owens J.H. & Miltner R.J. (2001). Controlling Cryptosporidium oocysts using conventional treatment, Journal AWWA, 93, 12, pp. 64-76.
  • 8. Elhadidy A.M., Dyke van M.I., Peldszus S. & Huck P.M. (2016). Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water, Journal of Microbiological Methods, 130, pp. 154-163, DOI: 10.1016/j.mimet.2016.09.009. Epub 2016 Sep 13.
  • 9. Emelko M.B. (2001). Removal of Cryptosporidium parvum by granular media filtration, Ph.D. thesis, University of Waterloo, ON, Canada.
  • 10. Fortmann-Roe S., Iwanejko R., Wójcik W. (2015). Dynamic risk assessment method - a proposal for assessing risk in water supply system, Archives of Environmental Protection 41, 2, DOI: 10.1515/aep-2015-0016.
  • 11. Gumińska J., Kłos M., Pawłowska A. (2010). Disinfection byproducts precursors removal from dam reservoir water, Archives of Environmental Protection, 36, 3, pp. 39-50.
  • 12. Gunten von U. & Pinkernell U. (2000). Ozonation of bromide-containing drinking waters: A delicate balance between disinfection and bromate formation, Water Science and Technology, 41, 7, pp. 53-59.
  • 13. Hamouda M.A., Anderson W.B., Dyke van M.I., Douglas I.P., McFadyen S.D. & Huck P.M. (2016). Scenario-based quantitative microbial risk assessment to evaluate the robustness of a drinking water treatment plant, Water Quality Research Journal, 51, 2, pp. 81-96. DOI: 10.2166/wqrjc.2016.034.
  • 14. Hartshorn A.J., Prpich G., Upton A., Macadam J., Jefferson B. & Jarvis P. (2014). Assessing filter robustness at drinking water treatment plants, Water and Environment Journal, 44, pp. 1-26.
  • 15. Hoefel D., Monis P.T., Grooby W.L., Andrews S. & Saint C.P. (2005). Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system, Applied and Environmental Microbiology, 71, 11, pp. 6479-6488 Crossref, Medline.
  • 16. Hoff J. C. (1978). The relationship of turbidity to disinfection of potable water - Evaluation of the microbiology standards for drinking water, USEPA (EPA-570/9-78-OOL).
  • 17. Hua G., Reckhow D.A., & Abusallout I. (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources, Chemosphere, 130, pp. 82-89.
  • 18. Huck P.M., Coffey B.M., Emelko M.B., Maurizio D.D., Slawson R.M., Anderson W.B.J. & Oever van den J. (2002). Effects of filter operation on cryptosporidium removal, Journal AWWA, 94, pp. 97-111.
  • 19. Huck P.M., Coffey B.M., O’Melia C.R., Emelko M.B. & Maurizio D.D. (2001). Filtration operation effects on pathogen passage, American Water Works Association Research Foundation and American Water Works Association, Denver, CO, USA, 285 pp., ISBN 1-58321-170-5.
  • 20. Jachimowski A., Nitkiewicz T. (2019). Comparative analysis of selected water disinfection technologies with the use of life cycle assessment, Archives of Environmental Protection, 45, 3, pp. 3-10.
  • 21. Kaleta J., Kida M., Koszelnik P., Papciak D., Puszkarewicz A., Tchórzewska-Cieślak B. (2017). The use of activated carbons for removing organic matter from groundwater, Archives of Environmental Protection, 43, 3, pp. 32-41.
  • 22. Kooij van der D., Visser A. & Hijnen W.A.M. (1982). Determining the concentration of easily assimilable organic carbon in drinking water, Journal AWWA, 74, 10, pp. 540.
  • 23. LeChevallier M.W., Evans T.M. & Seidler R.J. (1981). Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water, Applied and Environmental Microbiology, 42, pp. 159-167.
  • 24. Lipponen M.T., Martikainen P.J., Vasara R.E., Servomaa K., Zacheus O. & Kontro M.H. (2004). Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms, Water Research, 38, pp. 4424-4434 Crossref, Medline, ISI.
  • 25. Lusardi P.J., & Consonery P.J. (1999). Factors affecting filtered water turbidity, Journal AWWA, 91, pp. 28-40.
  • 26. Pharand L., Dyke van M.I., Anderson W.B., Yohannes Y. & Huck P.M. (2015). Full-Scale Ozone-Biofiltration: Seasonally Related Effects on NOM Removal, Journal AWWA, 107, 8, pp. E425-E435, DOI: 10.5942/jawwa.2015.107.0121.
  • 27. Phillippi E., Harrington G.W., Lau B., Thomas D. & Russell S. (2005). A closer look at filter effluent particles using image-based particle analysis, Proceedings, AWWA Water Quality Technology Conference and Exposition (WQTC), Quebec City, Quebec. CD-ROM, paper TUES15-5.
  • 28. Qualls R.G., Flynn M.P. & Johnson J.D., (1983). The role of suspended particles in ultraviolet disinfection, Journal of Water Pollution Control Federation, 55, pp. 1280-1285.
  • 29. Rook J. J. (1974). Formation of haloforms during chlorination of natural waters, Journal Water Treatment and Examination, 23, pp. 234-243.
  • 30. Scott D.B., Dyke van M.I., Anderson W.B. & Huck P.M. (2015). Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems, Canadian Journal of Microbiology, 61, 12, pp. 965-976, DOI: 10.1139/cjm-2015-0375.
  • 31. Sozański M. M. & Huck P.M. (2007). Experimental research in development of water treatment technology, Monografie Komitetu Inżynierii Środowiska PAN, Nr 42, Wyd. Drukarnia LIBER DUO s.c., Lublin, Poland. (in Polish)
  • 32. U.S. EPA (1991). Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources (March 1991 Edition), U.S. Environmental Protection Agency, Washington, D.C., USA.
  • 33. Upton A., Jefferson B., Moore G. & Jarvis P. (2017). Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data, Chemical Engineering Journal, 313, pp. 250-260, DOI: 10.1016/j.cej.2016.12.047.
  • 34. Veschetti E., Cittadini B., Maresca D., Citti G. & Ottaviani M. (2005) Inorganic by-products in waters disinfected with chlorine dioxide. Microchemical Journal 2005, Vol.79, pp. 165-170.
  • 35. WHO (2000). Disinfectants and disinfectant by-products, World Health Organization, Geneva, International Programme on Chemical Safety, 499 pp.
  • 36. Włodyka-Bergier A. (2016). UV254 radiation impact on organic halogen disinfection by-products formation in swimming pool water), Rozprawy, Monografie Nr 309, Wyd. AGH, Kraków, Poland. (in Polish)
  • 37. Zhang Y., Love N. & Edwards M. (2009). Nitrification in drinking water systems, Critical Reviews of Environmental Science and Technology 39, 3, pp. 153-208 Crossref.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4803999-0f8b-4626-94fc-581f8e64f6b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.