PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Network Intrusion Detection Using Machine Learning Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intrusion detection systems (IDS) are essential for the protection of advanced communication networks. These systems were primarily designed to identify particular patterns, signatures, and rule violations. Machine Learning and Deep Learning approaches have been used in recent years in the field of network intrusion detection to provide promising alternatives. These approaches can discriminate between normal and anomalous patterns. In this paper, the NSL-KDD (Network Security Laboratory Knowledge Discovery and Data Mining) benchmark data set has been used to evaluate Network Intrusion Detection Systems (NIDS) by using different machine learning algorithms such as Support Vector Machine, J48, Random Forest, and Naïve Bytes with both binary and multi-class classification. The results of the application of those techniques are discussed in details and outperformed previous works.
Twórcy
  • Computer Engineering Department, Umm Al-Qura University, Makkah 21961, Saudi Arabia
  • Computer Engineering Department, Umm Al-Qura University, Makkah 21961, Saudi Arabia
autor
  • Computer Engineering Department, Umm Al-Qura University, Makkah 21961, Saudi Arabia
Bibliografia
  • 1. Cisco Annual Internet Report (2018–2023) White Paper. (2022, January 23). Cisco. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11–741490.html
  • 2. Dyn Analysis Summary of Friday October 21 Attack (2022, February 20). https://web.archive.org/web/20200620203923
  • 3. Dartigue, C., Jang, H.I., Zeng, W. A new data-mining based approach for network intrusion detection. In Seventh Annual Communication Networks and Services Research Conference. 2009; 372–377.
  • 4. García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E. Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers & Security. 2009; 28(1–2); 18–28.
  • 5. Cisco. What Is Network Security? (2022, February,8). Cisco. https://www.cisco.com/c/en/us/products/security/what-is-network-security.html
  • 6. Kurose, J.F., Ross, K.W. Computer Networking: A Top-Down Approach (6th Edition). Pearson, 2012.
  • 7. Tanenbaum, A., Wetherall, D. Computer Networks (5th Edition). Pearson, 2010.
  • 8. Fernandes, G., Rodrigues, J.J.P.C., Carvalho, L.F., Al-Muhtadi, J.F., Proença, M.L. A comprehensive survey on network anomaly detection. Telecommunication Systems. 2018; 70(3): 447–489.
  • 9. Othman, S.M. Alsohybe, N.T., Ba-Alwi, F.M., Zahary, A.T. Survey on intrusion detection system types. 2018; 7(4): 444–463.
  • 10. Pal Singh, A., Deep Singh, M. Analysis of Host-Based and Network-Based Intrusion Detection System. International Journal of Computer Network and Information Security, 2014; 6(8): 41–47.
  • 11. Ferrag, M.A. Maglaras, L. Moschoyiannis, S., Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications. 2020; 50.
  • 12. Boutaba, R. Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M. A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications. 2018; 9(1).
  • 13. Buczak, A.L., Guven, E.A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials. 2016; 18(2): 1153–1176.
  • 14. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Communications Surveys & Tutorials. 2019; 21(3): 2671–2701.
  • 15. Berman, D., Buczak, A., Chavis, J., Corbett, C. A Survey of Deep Learning Methods for Cyber Security. Information. 2019; 10(4): 122.
  • 16. Mahdavifar, S., Ghorbani, A.A. Application of deep learning to cybersecurity: A survey. Neurocomputing. 2019; 347: 149–176.
  • 17. Ahmed, M., Naser Mahmood, A., Hu, J. A survey of network anomaly detection techniques. Journal of Network and Computer Applications. 2016; 60: 19–31.
  • 18. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A. A survey of network-based intrusion detection data sets. Computers & Security. 2019; 86: 147–167.
  • 19. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials. 2014; 16(1): 303–336.
  • 20. Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., Wang, C. Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access. 2018; 6: 35365–35381.
  • 21. UNB (2021, Novamber 15). https://www.unb.ca/cic/datasets/nsl.html.
  • 22. Chumachenko, K. Machine learning methods for malware detection and classification., 2017.
  • 23. Zou, J., Han, Y., So, S.S. Overview of artificial neural networks. Methods in molecular biology (Clifton, N.J.). 2008; 458: 15–23.
  • 24. Dong, B., Wang, X. Comparison deep learning method to traditional methods using for network intrusion detection. In 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). 2016; 581–585.
  • 25. Mahesh, B. Machine Learning Algorithms – A Review. International Journal of Science and Research (IJSR). 2020; 381–386.
  • 26. Farnaaz, N., Jabbar, M.A. Random forest modeling for network intrusion detection system. Procedia Computer Science. 2016; 89: 213–217.
  • 27. Bhumgara, A., Pitale, A. Detection of Network Intrusions using Hybrid Intelligent Systems. 1st International Conference on Advances in Information Technology (ICAIT). 2019; 500–506.
  • 28. Kumar, K., Batth, J.S. Network Intrusion Detection with Feature Selection Techniques using Machine-Learning Algorithms. International Journal of Computer Applications. 2016; 150(12): 1–13.
  • 29. Dhanabal, L., Shantharajah, S.P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. International journal of advanced research in computer and communication engineering. 2015; 4(6): 446–452.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4791675-64e8-4f1a-bafd-72aefba4f80b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.