PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Management of the Special Processes – An Experimental Study of Bent Reinforced Concrete Beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an analysis of the results obtained from the testing of simply supported reinforced concrete beams subjected to four-point bending. The beams, with two levels of steel reinforcement (ρs1=1.26%, ρs2=0.71%), and dimensions of 0.12x0.30x3.30m, were subjected to loading involving a sudden increase in force with multiple unloading cycles to zero. The study included comparative analysis of deflection results obtained from experimental tests (calculated based on the curvature of the element and readings from measurement devices) with deflection values obtained through calculations based on two selected standards. Real values of ultimate bending moments were also compared with theoretical values. Additionally, compressive strength tests were conducted on eight cubic concrete specimens with a side length of b=150mm, obtained for each concrete batch. They constitute accompanying studies. Using standard procedures, strength and statistical parameters were estimated and evaluated, taking into account the assessment of the quality of the concrete production used to make the reinforced concrete beams. Ensuring compliance with the process of producing full-sized reinforced concrete beams with existing standard procedures, as well as attention to the quality of concrete production, contributed to achieving satisfactory results in the experimental tests. Knowledge about the impact of loading on mechanical properties enables effective management of factors shaping quality to obtain a construction material with optimal parameters.
Bibliografia
  • 1. ISO 9000:2015: Quality management system – Fundamentals and vocabulary (in Polish).
  • 2. Skrivanova, N., Melichar, M. Validation of Process Stability in the Aviation Industry. In Proceedings of the 31st DAAAM International Symposium, Katalinic, B. (Ed.); DAAAM International: Vienna, Austria, 2020; 0614–0618. doi: 10.2507/31st.daaam.proceedings.084.
  • 3. Knop, K., Ingaldi, M., Smilek-Starczynowska, M. Reduction of Errors of the Conformity Assessment During the Visual Inspection of Electrical Devices, InAdvances in Manufacturing, Hamrol A., Ciszak O., Legutko S., Jurczyk M. Springer International Publishing, Cham. 2018; 857–867.
  • 4. Stefko, R., Slusarczyk, B., Kot, S., Kolmasiak, C. Transformation on Steel Products Distribution in Poland and Slovakia. Metalurgija. 2012; 51(1). 133–136.
  • 5. Ulewicz, R., Nový F. Quality management systems in special processes. Transportation Research Procedia. 2019; 40: 113–118. doi: 10.1016/j.trpro.2019.07.019.
  • 6. Boadu, E.F., Wang, C.C., Sunindijo, R.Y. Characteristics of the construction industry in developing countries and its implications for healthand safety: an exploratory study in Ghana. International Journal of Environmental Research and Public Health. 2020; 17(11): 4110. doi:10.3390/ijerph17114110.
  • 7. Anaman, K.A., Osei-Amponsah, C. Analysis of the causality links between the growth of the constructionindustry and the growth of the macro-economy in Ghana. Construction Management and Economics. 2007; 25(9): 951–961. doi: 10.1080/01446190701411208.
  • 8. Ulewicz, R., Ulewicz M. Problems in the Implementation of the Lean Concept in the Construction Industries. Lecture Notes in Civil Engineering. 2020; 47: 495–500.
  • 9. Kopiika, N., Vegera, P., Vashkevych, R., Blikharskyy, Z. Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives. 2021; 27(4): 242–247. doi: 10.30657/pea.2021.27.32.
  • 10. Czajkowska, A., Ingaldi, M. Structural Failures Risk Analysis as a Tool Supporting Corporate Responsibility. Journal of Risk and Financial Management. 2021; 14(4): 187. doi: 10.3390/jrfm14040187.
  • 11. Runkiewicz, L. Technical mishandles occurring in building renovation and modernization. Civil and Environmental Engineering Reports. 2012; 9: 103–109.
  • 12. Szczecina, M., Tworzewski, P., Uzarska, I. Numerical modeling of reinforced concrete beams, including the real position of reinforcing bars. Structure & Environment. 2018; 10(1): 28–38. doi: 10.30540/sae-2018-003.
  • 13. Kraus, P., Náprstková, N., Jirounková, K., Cais, J., Svobodová, J. Effect of Heat Treatment on the Microstructure of the Alloy AlSi7CrMnCu2.5. Manufacturing Technology. 2018; 18(6): 935–942.
  • 14. Krynke, M., Ivanova, T.N., Revenko, N.F. Factors, increasing the efficiency of work of maintenance, repair and operation units of industrial enterprises. Management Systems in Production Engineering. 2022; 30(1), 91–97. doi: 10.2478/mspe-2022-0012.
  • 15. Kucharikova, L., Mazur, M., Tillova, E., Chalupova, M., Zavodska, D., Vasko, A. Fracture surfaces of the secondary A226 cast alloy with 0.9% Fe. Engineering Failure Analysis. 2019; 105: 688–698.
  • 16. Czajkowska, A., Raczkiewicz, W., Ingaldi, M. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives. 2023; 29(3): 288–297. doi: 10.30657/pea.2023.29.33.
  • 17. Michałowska-Maziejuk D., Goszczyńska B. Effectiveness of Strengthening RC Beams Using Composite Materials—An Accelerated Strengthening Method, Materials. 2023. 16(13): 4847. doi: /10.3390/ma16134847.
  • 18. Goszczyńska, B.; Trąmpczyński, W.; Tworzewska, J. Analysis of crack width development in reinforced concrete beams.Materials, 2021; 14(11): 3043. doi: 10.3390/ma14113043.
  • 19. Bacharz, K., Goszczyńska, B. Shear Capacity of Reinforced Concrete Beams under Monotonic and Cyclic Loads: Experiments and Computational Models.Materials. 2021; 14(15): 4092. doi: 10.3390/ma14154092.
  • 20. Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K. Influence of maturing conditions of steel-fibre reinforced concrete on its selected parameters, Construction of Optimized Energy Potential. 2020; 9(1): 45–54. doi: 10.17512/bozpe.2020.1.05.
  • 21. PN-EN 12390-1:2002: Concrete testing Part 1: Shape, dimensions and other requirements for test specimens and molds.
  • 22. Drobiec, Ł., Jasiński, R., Piekarczyk, A. Diagnostyka konstrukcji żelbetowych. Metodologia, badania polowe, badania laboratoryjne betonu i stali, 3rd ed. PWN: Warszawa, Poland 2010. (in Polish).
  • 23. PN-B-03264:2002: Concrete, reinforced concrete and prestressed structures - Static calculations and design (in Polish).
  • 24. PN-EN-1992-1-1:2008: Eurocode 2 - Design of concrete structures - Part 1-1: General rules and rules for buildings (in Polish).
  • 25. Collective work under the direction of Prof. Lech Czarnecki, CONCRETE according to the PN-EN 206-1 standard – commentary; PKN, Polish Cement, Kraków 2004. (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4788f28-0045-4963-94bc-7ec6cafb5a26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.