PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie zanieczyszczeń powietrza oddziałujących na dzieci w przedszkolu miejskim zlokalizowanym przy drodze o dużym natężeniu ruchu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Children exposure to air pollutants in nursery school near a major road in urban area
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wyniki pomiarów stężeń lotnych związków organicznych (LZO), pyłu całkowitego (TSP), frakcji PM10, PM2,5 i PM1 oraz bioaerozoli. Wykonywano również pomiary stężenia CO2 jako wskaźnika skuteczności systemu wentylacji. Pomiary przeprowadzono w okresie grzewczym w dwóch salach opiekuńczych (dzieci w wieku 3-6 lat) oraz na zewnątrz budynku przedszkola położonego w centrum Gliwic (Górny Śląsk) przy drodze o dużym natężeniu ruchu. Wyniki badań wskazują na gorsze warunki co do jakości powietrza wewnątrz. Dla sumy 16 LZO stosunki stężeń wewnątrz i na zewnątrz budynku (I/O) w zależności od sali wahały się od 2 do 5, dla pyłu PM10 sięgały 4, a dla PM2,5 wynosiły około 2. W przypadku bioaerozoli grzybowych średni wskaźnik I/O sięgał 2, natomiast dla aerozoli bakteryjnych przekraczał 8. Jednocześnie ciągłe pomiary stężeń CO2 wykazały dominujący udział niskiej jakości powietrza podczas przebywania dzieci w obu salach przedszkola. Wyniki wskazują na niewystarczającą skuteczność systemu wentylacji, co może negatywnie wpływać na zdrowie i samopoczucie dzieci.
EN
Children are particularly sensitive to pollutants. The reason for this is that, according to body weight, they breathe in more air than adults. Moreover, due to rapid growth, their immature immune system is more vulnerable to damage than already mature organisms. Children aged 3 to 6 spend large amounts of time indoors, so there is a necessity to evaluate the quality of air in nursery schools. This study investigated the concentrations of volatile organic compounds (VOCs), particulate matter (TSP, PM10, PM2.5 and PM1) and bioaerosols. The concentration of CO2 was monitored as the indicator of ventilation efficiency. The measurements were performed during winter, in two classrooms and outside the nursery school building located in the centre of Gliwice (Upper Silesia), near a road with high traffic. Outdoor concentrations were lower than those indoors for each inspected classroom. For the sum of 16 VOCs, the I/O ratio, depending on classroom, varied from 2 to 5, PM10 reached 4 and for PM2.5, the ratio was about 2. For fungi bioaerosols, the average I/O ratio was about 2, while for bacteria, aerosols exceeded 8. The evaluation of indoor air quality (IAQ) based on CO2 concentration differed from averaging time. Taking into consideration the 24 hour distribution of CO2 concentration in both classrooms dominated the first category of indoor air quality (WEW1), we can expect that children stayed in the environment with high air quality, however, this was not the case. During children’s nursery school attendance for the duration of the working day and throughout five-hour elementary nursery care, the air inside classrooms was mostly 65 to 72% of poor quality (WEW4). In the case of certain pollutants, significant differences in air quality were found between the classrooms of older (I) and younger (II) children. For fungal bioaerosols, the concentration was twice as high in the classroom of younger children (II) compared to the classroom of older children (I). However, in the case of particulate matter, for all studied fractions (TSP, PM10, PM2.5 and PM1), concentrations were about twice as high in classroom I compared to classroom II. This confirms the important role of particulate matter resuspension in classroom I as a result of the intensive activity of older children. Compared to the classroom of older children (I), in the classroom of younger children (II) there were more absorbent materials; hence, we expected higher concentrations of VOCs associated with secondary sources. However, concentrations of VOCs did not confirm this relationship. In the case of bacterial bioaerosols, no significant differences were observed between the classrooms. Continuous measurements of CO2 concentrations showed that in the classroom of older children (I), the air was negligibly worse than in the classroom of younger children (II); this may have been due to the lower efficiency of the natural ventilation system on the first floor of the investigated building.
Rocznik
Strony
119--133
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Akademicka 2A, 44-100 Gliwice
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Akademicka 2A, 44-100 Gliwice
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Akademicka 2A, 44-100 Gliwice
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Ochrony Powietrza, ul. Akademicka 2A, 44-100 Gliwice
Bibliografia
  • [1] Ashmore M.R., Dimitroulopoulou C., Personal exposure of children to air pollution, Atmospheric Environment 2009, 43, 128-141.
  • [2] Busoon S., Breysse P., Yang W., Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea, Environment International 2003, 29, 79-85.
  • [3] Pekey H., Arslanbaş D., The relationship between indoor, outdoor and personal VOC concentrations in homes, offices and schools in the metropolitan region of Kocaeli, Turkey, Water Air Soil Pollution 2008, 191, 113-129.
  • [4] Bernstein J. A., Alexis N., Bacchus H., Bernstein I.L., Fritz P., Horner E., Li N., Mason S., Nel A., Oullette J., Reijula K., Reponen T., Seltzer J., Smith A., Tarlo S.M., The health effects of nonindustrial indoor air pollution, The Journal of Allergy and Clinical Immunology 2008, 121, 35, 585-591.
  • [5] Santamouris M., Synnefa A., Asssimakopoulos M., Livada I., Pavlou K., Papaglastra M., Gaitania N., Kolokotsa D., Assimakopoulos V., Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation, Energy and Buildings 2008, 40, 1833-1843.
  • [6] Park K.-H., Jo W.-K., Personal volatile organic compound (VOC) exposure of children attending elementary schools adjacent to industrial complex, Atmospheric Environment 2004, 38,1303-1312.
  • [7] Salvi S., Health effects of ambient air pollution in children, Paediatric Respiratory Reviews 2007, 8, 275-280.
  • [8] Daisey J.M., Angell W.J., Apte M.G., Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information, Indoor Air 2003, 13, 53-64.
  • [9] Sofuoglu S.C., Guler A., Fikret I., Sofuoglu A., An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools, International Journal of Hygiene and Environmental Health 2011, 214, 36-46.
  • [10] Godwin C., Batterman S., Indoor air quality in Michigan schools, Indoor Air 2007, 17, 109-121.
  • [11] Gennaro G., Farella G. , Marzocca A., Mazzone A., Tutino M., Indoor and outdoor monitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues, International Journal of Environmental Research and Public Health 2013, 10, 6273-6291.
  • [12] Krol S., Namieśnik J., Zabiegała, B., α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: The impact on air quality and human exposure, Science of the Total Environment 2014, 468-469, 985-995.
  • [13] Almeida-Silva M., Wolterbeek H.T., Almeida S.M., Elderly exposure to indoor air pollutants, Atmospheric Environment 2014, 85, 54-63.
  • [14] Zwoździak A., Sowka I., Fortuna M., Wpływ stężeń pyłów (PM1, PM2,5, PM10) w środowisku wewnątrz szkoły na wartości wskaźników spirometrycznych u dzieci, Rocznik Ochrona Środowiska 2013, 15, 2022-2038.
  • [15] Dumała S.M., Dudzińska M.R., Microbiological indoor air quality in Polish schools, Rocznik Ochrona Środowiska 2013, 15, 231-244.
  • [16] Gładyszewska-Fiedoruk K., Correlations of air humidity and carbon dioxide concentration in the kindergarten, Energy and Buildings 2013, 62, 45-50.
  • [17] Branco P.T.B.S., Alvim-Ferraz M.C.M., Martins F.G., Sousa S.I.V., Indoor air quality in urban nurseries at Porto city: Particulate matter assessment, Atmospheric Environment 2014, 84, 133-143.
  • [18] Yoon C., Lee K., Park D., Indoor air quality differences between urban and rural preschools in Korea, Environmental Science Pollution Research 2011, 18, 333-345.
  • [19] Salvato J., Nemerow N., Agardy F., Environmental Engineering, John Wiley & Sons Inc., Hoboken, New Jersey 2003.
  • [20] ASHARE Handbook - Fundamentals, Amerykańskie Stowarzyszenie Inżynierow Ogrzewnictwa i Wentylacji, 2009.
  • [21] Ogulei D., Hopke P.K., Wallace L.A., Analysis of indoor particles size distributions in an occupied townhouse using positive matrix factorization, Indoor Air 2006, 16, 204-15.
  • [22] Pope C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Journal American Medical Association 2002, 287, 1132-1141.
  • [23] Zanobetti A., Schwartz P., The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis, Environmental Health Perspectives 2005, 113, 978-982.
  • [24] Wellenius G.A., Schwartz J., Mittleman M.A., Particulate air pollution and hospital admissions for congestive heart failure in seven United States cities, American Journal of Cardiology 2006, 97, 404-408.
  • [25] Fajersztajn L., Veras M., Barrozo L.V., Saldiva P., Air pollution: a potentially modifiable risk factor for lung cancer, Nature Reviews Cancer 2013, 13, 674-678.
  • [26] Barrett J.R., Assessing the health threat of outdoor air: Lung cancer risk of particulate matter exposure, Environmental Health Perspectives 2014, 122, A252.
  • [27] Li Y.-G., Gao X., Epidemiologic studies of particulate matter and lung cancer (Review), Chinese Journal of Cancer 2014, 33, 376-380.
  • [28] Kołwzan B., Adamiak W., Grabas K., Pawełczyk A., Podstawy mikrobiologii w ochronie środowiska, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006.
  • [29] Nevalainen A., Willeke K., Liebhaber F., Pastuszka J., Burge H., Henningson E., Bioaerosol sampling, Aerosol Measurement: Principles, Techniques and Applications, [in:] K. Willeke and P. Baron (eds.), Van Nostrand Reinhold, New York 1993.
  • [30] Pastuszka J.S., Wlazło A., Łudzeń-Izbińska B., Pastuszka K., Aerozol bakteryjny i grzybowy w sali gimnastycznej, Ochrona Powietrza i Problemy Odpadow 2004, 2, 62-66.
  • [31] Almeida S.M., Canha N., Silva A., do Carmo Freitas M., Pegas P., Alves C., Evtyugina M., Adriao Pio C., Children exposure to atmospheric particles in indoor of Lisbon primary schools, Atmospheric Environment 2011, 45, 7594-7599.
  • [32] PN-EN 13779:2008 Wentylacja budynków niemieszkalnych. Wymagania dotyczące właściwości instalacji wentylacji i klimatyzacji.
  • [33] Shendell D.G., Prill R., Fisk W.J., Apte M.G., Blake D., Faulkner D., Associations between classroom CO2 concentrations and student attendance in Washington and Idaho, Indoor Air 2004, 14, 333-341.
  • [34] Mydlarz C.A., Conetta R., Connolly D., Comparison of environmental and acoustic factors in occupied school classrooms for 11-16 year old students, Building and Environment 2013, 60, 265-271.
  • [35] SKC, VOC method update SKC appendices to EPA method TO-17, Publication 1667, Year 2005, www.skcinc.com/instructions/1667.pdf
  • [36] Kozielska B., Poziomy stężeń benzenu i jego alkilowych pochodnych w powietrzu atmosferycznym w Gliwicach, Archiwum Gospodarki Odpadami i Ochrony Środowiska 2013, 15, 81-88.
  • [37] IARC (International Agency for Research on Cancer), IARC Monogr. 1982.
  • [38] Zarządzenie Ministra Zdrowia i Opieki Społecznej, MP 1996, Nr 19, poz. 231.
  • [39] Demirel G., Ozden T., Doğeroğlu T., Gaga E.O., Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment, Science of the Total Environment 2014, 473-474, 537-548.
  • [40] Zwoździak A., Sówka I., Krupińska B., Zwoździak J., Nych A., Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wroclaw, Poland? Building and Environment 2013, 66, 173-180.
  • [41] Nantka M.B., Airtightness and natural ventilation: A case study for dwellings in Poland, International Journal of Ventilation 2005, 4, 79-92.
  • [42] Ray S.D., Glicksman L.R., Increased natural ventilation flow rates through ventilation shafts, International Journal of Ventilation 2013, 12, 195-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4749b45-8640-40ae-8849-1dc0480553e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.