PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel privacy-supporting 2-class classification technique for brain MRI images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Developing automated Computer Aided Diagnosis (CAD) framework for assisting radiologists in a fast and effective classification of brain Magnetic Resonance (MR) images is of great importance, given plausible usage of Electronic Health Records (EHR) in healthcare system. This work aims at proposing two novel privacy supporting classifiers for automatic segregation of brain MR images. To ensure privacy, our article employs a spatial steganographic approach to hide patients sensitive health information in brain images itself. Proposed methods employ Discrete Wavelet Transform (DWT) for extracting relevant features from original and stego images. Subsequently, Symmetrical Uncertainty Ranking (SUR) and Probabilistic Principal Components Analysis (PPCA) are used to obtain a reduced feature vector for Support Vector Machine (SVM) and Filtered Classifier (FC) respectively. The experiments are carried out on two benchmark datasets DS-75 and DS-160 collected from Harvard Medical School website and one larger input pool of self-collected dataset NITR-DHH. To validate this work, the proposed schemes are experimented on both original and stego brain MR images and are compared against eight state-of-the-art classification techniques with respect to six standard parameters. The results reveal that the proposed techniques are robust and scalable with respect to the size of the datasets. Moreover, it is concluded that applying steganographic algorithm on brain MR images yield equally satisfactory classification rate.
Twórcy
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha , India
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha , India
  • Department of Computer Science and Engineering, National Institute of Technology Rourkela, Odisha 769008, India
Bibliografia
  • [1] Westbrook C. Handbook of MRI technique. John Wiley & Sons; 2008.
  • [2] Barra V, Boire J. Automatic segmentation of subcortical brain structure in MR images using information fusion. IEEE Trans Med Imaging 2001;20:549–58. http://dx.doi.org/10.1109/42.932740.
  • [3] Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imag Graph 2007;31(4–5):198–211. http://dx.doi.org/10.1016/j.compmedimag.2007.02.002.
  • [4] Duda R, Hart P, Stork D. Pattern classification. Pattern classification. New York: John Wiley & Sons; 2001.
  • [5] Rodrigues JJ, Torre IDL, Fernandez G, Coronado ML. Analysis of the security and privacy requirements of cloud-based electronic health records systems. J Med Internet Res 2013;15(8):e186. http://dx.doi.org/10.2196/jmir.2494.
  • [6] Chaplot S, Patnaik LM, Jagannathan NR. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 2006;1(1):86–92. http://dx.doi.org/10.1016/j.bspc.2006.05.002.
  • [7] El-Dahshan ESA, Hosny T, Salem ABM. Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 2010;20(2):433–41. http://dx.doi.org/10.1016/j.dsp.2009.07.002.
  • [8] Das S, Chowdhury M, Kundu MK, Brain MR. image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 2013;137:1–17. http://dx.doi.org/10.2528/PIER13010105.
  • [9] Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett 2013;34(16):2151–6. http://dx.doi.org/10.1016/j.patrec.2013.08.017.
  • [10] El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 2014;41(11):5526–45. http://dx.doi.org/10.1016/j.eswa.2014.01.021.
  • [11] Nayak DR, Dash R, Majhi B. Least squares SVM approach for abnormal brain detection in MRI using multiresolution analysis. 2015 International Conference on Computing, Communication and Security (ICCCS). 2015. pp. 1–6. http://dx.doi.org/10.1109/CCCS.2015.7374140.
  • [12] Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, et al. Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. International Conference on Bioinformatics and Biomedical Engineering. 2015. pp. 201–9. http://dx.doi.org/10.1007/978-3-319-16483-0_20.
  • [13] Kong Y, Deng Y, Dai Q. Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Process Lett 2015;22:573–7. http://dx.doi.org/10.1109/LSP.2014.2364612.
  • [14] Shahangian B, Pourghassem H. Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure. Biocybern Biomed Eng 2016;36(1):217–32. http://dx.doi.org/10.1016/j.bbe.2015.12.001.
  • [15] Nayak DR, Dash R, Majhi B. Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 2016;177:188–97. http://dx.doi.org/10.1016/j.neucom.2015.11.034.
  • [16] Wang S, Phillips P, Yang J, Sun P, Zhang Y. Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng/Biomed Tech 2016;61 (4):431–41. http://dx.doi.org/10.1515/bmt-2015-0152.
  • [17] Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, et al. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multim Tools Appl 2016;75(23):15601–17. http://dx.doi.org/10.1007/s11042-015-2649-7.
  • [18] Nayak DR, Dash R, Majhi B. Stationary wavelet transform and AdaBoost with SVM based pathological brain detection in MRI scanning. CNS Neurol Disord Drug Targets 2017;16 (2):137–49. http://dx.doi.org/10.2174/1871527315666161024142036.
  • [19] Kaur T, Saini BS, Gupta S. An optimal spectroscopic feature fusion strategy for MR brain tumor classification using Fisher Criteria and Parameter-Free BAT optimization algorithm. Biocybern Biomed Eng 2018;38(2):409–24. http://dx.doi.org/10.1016/j.bbe.2018.02.008.
  • [20] Raju AR, Suresh P, Rao RR. Bayesian HCS-based multi- SVNN: a classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering. Biocybern Biomed Eng 2018;38(3):646–60. http://dx.doi.org/10.1016/j.bbe.2018.05.001.
  • [21] Gudigar A, Raghavendra U, Ciaccio EJ, Arunkumar N, Abdulhay E, Acharya UR. Automated categorization of multi-class brain abnormalities using decomposition techniques with MRI images: a comparative study. IEEE Access 2019;7:28498–509. http://dx.doi.org/10.1109/ACCESS.2019.2901055.
  • [22] Anaraki AK, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 2019;39(1):63–74. http://dx.doi.org/10.1016/j.bbe.2018.10.004.
  • [23] Kale VV, Hamde ST, Holambe RS. Brain disease diagnosis using local binary pattern and steerable pyramid. Int J Multim Inf Retr 2019;8(3):155–65. http://dx.doi.org/10.1007/s13735-019-00174-x.
  • [24] Dey N, Rajinikanth V, Shi F, Tavares JMRS, Moraru L, Karthik KA, et al. Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of flair/ diffusion-weighted modality. Biocybern Biomed Eng 2019;39(3):843–56. http://dx.doi.org/10.1016/j.bbe.2019.07.005.
  • [25] Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca A. An unsupervised learning model for deformable medical image registration. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 9252–60.
  • [26] Buckner RL, Roffman JL, Smoller JW. Brain genomics superstruct project (GSP). Harvard Dataverse 2014;10. http://dx.doi.org/10.7910/DVN/25833.
  • [27] Lu S, Lu Z, Yang J, Yang M, Wang S. A pathological brain detection system based on kernel based ELM. Multim Tools Appl 2018;77(3):3715–28. http://dx.doi.org/10.1007/s11042-016-3559-z.
  • [28] Nayak DR, Dash R, Majhi B, Zhang Y. A hybrid regularized extreme learning machine for automated detection of pathological brain. Biocybern Biomed Eng 2019;39(3):880–92. http://dx.doi.org/10.1016/j.bbe.2019.08.005.
  • [29] Narayanan A, Rajasekaran MP, Zhang Y, Govindaraj V, Thiyagarajan A. Multi-channeled MR brain image segmentation: a novel double optimization approach combined with clustering technique for tumor identification and tissue segmentation. Biocybern Biomed Eng 2019;39(2):350–81. http://dx.doi.org/10.1016/j.bbe.2018.12.003.
  • [30] Nayak DR, Das D, Dash R, Majhi S, Majhi B. Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images. Multim Tools Appl 2019;1–16. http://dx.doi.org/10.1007/s11042-019-7233-0.
  • [31] Talo M, Baloglu UB, Yildirim, Acharya UR. Application of deep transfer learning for automated brain abnormality classification using MR images. Cognit Syst Res 2019;54:176–88. http://dx.doi.org/10.1016/j.cogsys.2018.12.007.
  • [32] Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 2019;30:174–82. http://dx.doi.org/10.1016/j.jocs.2018.12.003.
  • [33] Ozyurt F, Sert E, Avci E, Dogantekin E. Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy. Measurement 2019;147:106830. http://dx.doi.org/10.1016/j.measurement.2019.07.058.
  • [34] Tekchandani H, Verma S, Londhe ND. Mediastinal lymph node malignancy detection in computed tomography images using fully convolutional network. Biocybern Biomed Eng 2020;40(1):187–99. http://dx.doi.org/10.1016/j.bbe.2019.05.002.
  • [35] Reichenbach JR. The impact of deep learning. Z Med Phys 2019;29(2):83–4. http://dx.doi.org/10.1016/j.zemedi.2019.02.001.
  • [36] Subudhi A, Dash M, Sabut S. Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern Biomed Eng 2020;40(1):277–89. http://dx.doi.org/10.1016/j.bbe.2019.04.004.
  • [37] Deepak S, Ameer PM. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 2019;111:103345. http://dx.doi.org/10.1016/j.compbiomed.2019.103345.
  • [38] Swati ZNK, Zhao Q, Kabir M, Ali F, Zakir A, Ahmed S, et al. Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 2019;7:17809–22. http://dx.doi.org/10.1109/ACCESS.2019.2892455.
  • [39] Lu S, Lu Z, Zhang Y. Pathological brain detection based on AlexNet and transfer learning. J Comput Sci 2019;30:41–7. http://dx.doi.org/10.1016/j.jocs.2018.11.008.
  • [40] Nayak DR, Dash R, Majhi B. Automated diagnosis of multiclass brain abnormalities using MRI images: a deep convolutional neural network based method. Pattern Recognit Lett 2020. http://dx.doi.org/10.1016/j.patrec.2020.04.018.
  • [41] Gursoy G, Harmanci A, Tang H, Ayday E, Brenner S. When biology gets personal: hidden challenges of privacy and ethics in biological big data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, vol. 24. 2019. pp. 386–90. http://dx.doi.org/10.1142/9789813279827_0035.
  • [42] Cheddad A, Condell J, Curran K, Kevitt PM. Digital image steganography: survey and analysis of current methods. Signal Process 2010;90(3):727–52. http://dx.doi.org/10.1016/j.sigpro.2009.08.010.
  • [43] Chan CK, Cheng L. Hiding data in images by simple LSB substitution. Pattern Recognit 2004;37(3):469–74. http://dx.doi.org/10.1016/j.patcog.2003.08.007.
  • [44] Nanni L, Ghidoni S, Brahnam S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit 2017;71:158–72. http://dx.doi.org/10.1016/j.patcog.2017.05.025.
  • [45] Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc: Ser B (Stat Methodol) 1999;61(3): 611–22. http://dx.doi.org/10.1111/1467-9868.00196.
  • [46] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng 2014;40(1):16–28. http://dx.doi.org/10.1016/j.compeleceng.2013.11.024.
  • [47] Devi S, Sahoo MN, Muhammad K, Ding W, Bakshi S. Hiding medical information in brain MR images without affecting accuracy of classifying pathological brain. Future Gen Comput Syst 2019;99:235–46. http://dx.doi.org/10.1016/j.future.2019.01.047.
  • [48] Vetterli M, Herley C. Wavelets and filter banks: theory and design. IEEE Trans Signal Process 1992;40(9):2207–32. http://dx.doi.org/10.1109/78.157221.
  • [49] Porwik P, Lisowska A. The Haar-wavelet transform in digital image processing: its status and achievements. Mach Graph Vis 2004;13(1/2):79–98.
  • [50] Hall MA, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowl Data Eng 2003;15(6):1437–47. http://dx.doi.org/10.1109/TKDE.2003.1245283.
  • [51] Vapnik VN, Vapnik V. Statistical learning theory. New York: John Wiley & Sons; 1998. p. 1.
  • [52] Scholkopf B, Burges C, Smola A. Advances in kernel methods: support vector learning. Cambridge, MA: MIT Press; 1999.
  • [53] Chapaneri S, Lopes R, Jayaswal D. Evaluation of music features for PUK kernel based genre classification. International Conference on Advanced Computing Technologies and Applications (ICACTA), vol. 45. 2015. pp. 186–96. http://dx.doi.org/10.1016/j.procs.2015.03.119.
  • [54] Randen T, Husoy JH. Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 1999;21(4):291–310. http://dx.doi.org/10.1109/34.761261.
  • [55] Johnson KA, Becker JA. The whole brain atlas; 1999, http://wwwmedharvardedu/AANLIB/.
  • [56] Devi S, Bakshi S, Sahoo MN. NITR-DHH: A T2-weighted brain magnetic resonance image dataset. ACM SIGBioinform Rec 2020;9(1):1. http://dx.doi.org/10.1145/3380874.3380875.
  • [57] Kaur T, Gandhi TK. Automated brain image classification based on VGG-16 and transfer learning. 2019 International Conference on Information Technology (ICIT). 2019. pp. 94–8. http://dx.doi.org/10.1109/ICIT48102.2019.00023.
  • [58] Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR. Convolutional neural networks for multi-class brain disease detection using MRI images. Comput Med Imaging Graph 2019;78:101673. http://dx.doi.org/10.1016/j.compmedimag.2019.101673.
  • [59] Kaur T, Gandhi TK. Deep convolutional neural networks with transfer learning for automated brain image classification. Mach Vis Appl 2020;31:1–16. http://dx.doi.org/10.1007/s00138-020-01069-2.
  • [60] Lo CM, Chen YC, Weng RC, Hsieh KLC. Intelligent glioma grading based on deep transfer learning of MRI radiomic features. Appl Sci 2019;9(22):4926. http://dx.doi.org/10.3390/app9224926.
  • [61] Al-Stouhi S, Reddy CK. Transfer learning for class imbalance problems with inadequate data. Knowl Inf Syst 2016;48(1):201–28. http://dx.doi.org/10.1007/s10115-015-0870-3.
  • [62] Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data 2019;6(1):27. http://dx.doi.org/10.1186/s40537-019-0192-5.
  • [63] Cheplygina V. Cats or CAT scans: transfer learning from natural or medical image source data sets? Curr Opin Biomed Eng 2019;9:21–7. http://dx.doi.org/10.1016/j.cobme.2018.12.005.
  • [64] Ji Z, Liu J, Cao G, Sun Q, Chen Q. Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recognit 2014;47(7):2454–66. http://dx.doi.org/10.1016/j.patcog.2014.01.017.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a46f134d-7038-47fd-8541-489b71a4f08a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.