PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Shortened Heat Treatment on the Hardness and Microstructure of 320.0 Aluminium Alloy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20°C) followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.
Rocznik
Strony
27--30
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Chipless Forming Technology, University of Bielsko-Biała, ul. Willowa 2, 43- 300 Bielsko - Biała, Poland
Bibliografia
  • [1] Czekaj, E. (2005). Short-lived ultra high temperature silicon spheroidization treatment. Archives of Foundry. 5(17), 51-68.
  • [2] Stankowiak, A. & Bydałek, A. W. (2007). The influence of the cryogenic processing after saturating on propriety AlCu4,7 cast alloy. Archives of Foundry Engineering. 7(2), 147-152.
  • [3] Sokolowski, J. H., et al. (2001). Improvement of 319 Aluminum Alloy Casting Durability by High Temperature Solution Treatment. Journal of Advanced Materials Processing Technology. 109, 174-180.
  • [4] Colley, L. J., Wells, M. A., MacKay, R. & Kasprzak, W. (2011). Dissolution of Second Phase Particles in 319-type Aluminium Alloy. Heat Treating 2011: Proceedings of the 26th Conference, (pp. 189-198). ASM International, Materials Park, OH.
  • [5] Han, Y. M., Samuel, A. M., Samuel, F. H. & Doty H. W. (2008). Dissolution of Al2Cu phase in non-modified and Srmodified 319 type alloys. International Journal Cast Metals Research. 21(5), 387-393. DOI:10.1179/136404608X347662.
  • [6] Sjölander, E., & Seifeddine, S. (2010). Optimisation of solution treatment of cast Al–Si–Cu alloys. Materials and Design. 31, 44-49. DOI:10.1016/j.matdes.2009.10.035.
  • [7] Pezda, J. (2010). Effect of heat treatment operations on the Rm tensile strength of silumins. Archives of Foundry Engineering. 10(4), 61-64.
  • [8] Pezda, J. (2010). Heat treatment of the EN AC-AlSi9Cu3(Fe) alloy. Archives of Foundry Engineering. 12(2), 99-102.
  • [9] Wang, P.S., Lee, S.L. & Lin, J.C. (2000). Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium. Journal of Materials Research. 15(9), 2027-2035. DOI:10.1557/JMR.2000.0291.
  • [10] Han, Y. et al. (2014). Optimizing the tensile properties of Al-Si-Cu-Mg 319-type alloys: Role of solution heat treatment. Materials Design. In Press. DOI:10.1016/j.matdes.2014.01.060.
  • [11] Górny, Z. (1992). Casting alloys of non-ferrous metals. Warszawa: WNT.
  • [12] Alkahtani, S. (2011). Mechanical performance of heat treated 319 alloys as a function of alloying and aging parameters. Materials & Design. 41, 358-369. DOI:10.1016/j.matdes.2012.04.034.
  • [13] Ibrahim, M. F. (2011). Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Materials and Design. 32(4), 2130-2142. DOI:10.1016/j.matdes.2010.11.040.
  • [14] Dobrzański, L. A., Krupiński, M. & Sokolowski, J. H. (2006) Use of artificial intelligence methods to classification of defects in castings from Al-Si-Cu alloys. Archives of Foundry. 6(22), 598-605.
  • [15] Carrera, E. et al. (2007). Measurement of residual stresses in cast aluminium engine blocks. Journal of Materials Processing Technology. 189, 206-210.
  • [16] Krupiński, M., Dobrzański, L. A. & Sokolowski, J. H. (2008). Microstructure analysis of the automotive Al-Si-Cu castings. Archives of Foundry Engineering. 8(1), 71-74.
  • [17] Poniewierski, Z. (1989). Crystallization, structure and properties of silumins. Warszawa: WNT.
  • [18] Wasilewski, P. (1993). Silumins - Modification and its impact on structure and properties. Katowice: PAN Solidification of metals and alloys. 21, Monography.
  • [19] Dahle, A. K., et al. (2005). Eutectic modification and microstructure development in Al-Si Alloys. Materials Science and Engineering A. 413-414, 243-248. DOI:10.1016/j.msea.2005.09.055.
  • [20] Pietrowski, S. (2001). Silumins. Łódź: Technical University Editorial.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a46bbc8e-720d-467c-86d4-8296e3cac8d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.