PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Element Analysis on Structural Behaviour of Geopolymer Reinforced Concrete Beam using Johnson-Cook Damage in ABAQUS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage.
Twórcy
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Malaysia
autor
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
autor
  • University of Plymouth, School of Marine Science and Engineering, Plymouth PL4 8AA, United Kingdom
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Malaysia
Bibliografia
  • [1] J. Davidovits, Properties of geopolymer cements, First Int. Conf. Alkaline Cem. Concr. 131-149 (1994).
  • [2] K. Ramujee, M. Potharaju, Mechanical properties of geopolymer concrete composites, Mater. Today Proc. 4, 2937-2945 (2017).
  • [3] I.H. Aziz, M.M.A.B. Abdullah, C.Y. Heah, Y.M. Liew, Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature, Adv. Cem. Res. 32, 465-475 (2020).
  • [4] A.M.M. Al Bakri, H. Kamarudin, M. Bnhussain, I.K. Nizar, A.R. Rafiza, A.M. Izzat, Chemical reactions in the geopolymerisation Process Using Fly Ash-Based Geopolymer: A Review, J. Appl. Sci. Res. 7, 1199-1203 (2011).
  • [5] D.D. Burduhos, M.M.A.B. Abdullah, P. Vizureanu, The effect of fly ash/alkaline activator ratio in Class F fly ash based geopolymers, Eur. J. Mater. Sci. Eng. 2, 111-118 (2017).
  • [6] H. Ng, C.Y. Heah, M.M.A.B. Abdullah, Y. Ng, R. Bayuaji, Study of fly ash geopolymer and fly ash/slag geopolymer in term of physical and mechanical properties, Eur. J. Mater. Sci. Eng. 5, 187-198 (2020).
  • [7] E.A. Obonyo, E. Kamseu, P.N. Lemougna, A.B. Tchamba, U.C. Melo, C. Leonelli, A sustainable approach for the geopolymerization of natural iron-rich aluminosilicate materials, Sustainability (Switzerland) 6, 5535-5553 (2014).
  • [8] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, Kaolin-based geopolymers with various NaOH concentrations, Int. J. Miner. Metall. Mater. 20, 313-322 (2013).
  • [9] F.U.A. Shaikh, Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates, Int. J. Sustain. Built Environ. 5, 277-287 (2016).
  • [10] A.A. Paizun, M. Fathullah, M.M.A. Abdullah, Z. Shayfull, F. Tahir, A short review on fly ash geopolymer machining: A large gap with bright potential for engineering applications, International Conference on Green Design and Manufacture (IConGDM2019), AIP Conference Proceedings, pp. 020184 (2019).
  • [11] G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Constr. Build. Mater. 47, 409-418 (2013).
  • [12] W. Bin Sun, Y. Jiang, W.Z. He, An overview on the blast loading and blast effects on the RC structures, Appl. Mech. Mater. 94, 77-80 (2011).
  • [13] C.F. Zhao, J.Y. Chen, Y. Wang, S.J. Lu, Damage mechanism and response of reinforced concrete containment structure under internal blast loading, Theor. Appl. Fract. Mech. 61, 12-20 (2012).
  • [14] Q. Ling, Y. He, Y. He, C. Pang, Dynamic response of multibody structure subjected to blast loading, Eur. J. Mech. A/Solids 64, 46-57 (2017).
  • [15] R. Jayasooriya, D.P. Thambiratnam, N.J. Perera, V. Kosse, Blast response and safety evaluation of a composite column for use as key element in structural systems, Eng. Struct. 33, 3483-3495 (2011).
  • [16] C. Wu, M. Lukaszewicz, K. Schebella, L. Antanovskii, Experimental and numerical investigation of confined explosion in a blast chamber, J. Loss Prev. Process ind. 26, 737-750 (2013).
  • [17] R. Castedo, P. Segarra, A. Alanon, L.M. Lopez, A.P. Santos, J.A. Sanchidrian, Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation, Int. J. Impact Eng. 86, 145-156 (2015).
  • [18] C. Diyaroglu, E. Oterkus, E. Madenci, T. Rabczuk, A. Siddiq, Peridynamic modeling of composite laminates under explosive loading, Compos. Struct. 144, 14-23 (2016).
  • [19] K. Mahmadi, N. Aquelet, Euler-Lagrange simulation of high pressure shock waves, Wave Motion 54, 28-42 (2015).
  • [20] D. Angela, D.D. Angela, Finite element analysis of fatigue response of nickel steel compact tension samples using ABAQUS, Procedia Structural Integrity 13, 939-946 (2018).
  • [21] N.F. Hany, E.G. Hantouche, M.H. Harajli, Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity, Eng. Struct. 125, 1-14 (2016).
  • [22] Abaqus Analysis User Manual - Abaqus Version 6.8. (2008). Retrieved November 5, 2010, from http://bee-pg-031941:2080/v6.8/books/usb/default.htm
Uwagi
1. The authors wish to acknowledge the Center of Geopolymer and Green Technology for providing the laboratory facilities. This work was funding supported by the “Partnership for Research in Geopolymer Concrete” (PRIGeoC-689857) sponsored by the European Union.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a46afef8-1638-4993-a884-6d11276c6492
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.