PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some methods of pre-processing input data for neural networks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two techniques of data pre-processing for neural networks are considered in this paper: (i) data compression with the application of the principal component analysis method, and (ii) various forms of data scaling. The novelty of this paper is associated with compressed input data scaling by the rotation (by the “stretching”) in neural network. This approach can be treated as the new proposition for data preprocessing techniques. The influence of various types of input data pre-processing on the accuracy of neural network results is discussed by using numerical examples for the cases of natural frequency predictions of horizontal vibrations of load-bearing walls. It is concluded that a significant reduction in the neural network prediction errors is possible by conducting the appropriate input data transformation.
Rocznik
Strony
141--151
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Pedagogical University of Cracow, Institute of Technology Podchorążych 2, 30-084 Kraków, Poland
autor
  • Pedagogical University of Cracow, Institute of Technology Podchorążych 2, 30-084 Kraków, Poland
Bibliografia
  • [1] C.M. Bishop. Neural networks for pattern recognition. Oxford, Clarendon Press, 1996.
  • [2] J.J. Davis, A.J. Clark. Data preprocessing for anomaly based network intrusion detection: a review. Computers and Security, 30: 1–23, 2011.
  • [3] A. Famili, W-M. Shen, R. Weber, E. Simoudis. Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1: 3–23, 1997.
  • [4] S. Haykin. Neural networks – a comprehensive foundation. 2nd Edition, Prentice Hall Intern. Inc., Upper Saddle River, NY, 1999.
  • [5] D-S. Joo, D-J. Choi, H. Park. The effects of data preprocessing in the determination of coagulant dosing rate. Water Research, 34(13): 3295–3302, 2000.
  • [6] I. Klevecka, J. Lelis. Pre-processing of input data of neural networks: the case of forecasting telecommunication network traffic. Telektronikk, 104(3/4): 168–178, 2008.
  • [7] P. Koprinkova, M. Petrova. Data-scaling problems in neural-network training. Engineering Applications of Artificial Intelligence, 12: 281–296, 1999.
  • [8] K. Kuźniar, Z. Waszczyszyn. Neural analysis of vibration problems of real flat buildings and data pre-processing. Engineering Structures, 24: 1327–1335, 2002.
  • [9] K. Kuźniar, Z. Waszczyszyn. Neural networks for the simulation and identification analysis of buildings subjected to paraseismic excitations. Chapter XVI in: N. Lagaros and Y. Tsompanakis [Eds.], Intelligent computational paradigms in earthquake engineering, Idea Group, Hershey, PA, USA, 2007, 393–432.
  • [10] K. Kuźniar, M. Zając. Data pre-processing in the neural network identification of the modified walls natural frequencies. Proceedings of the 19th International Conference on Computer Methods in Mechanics CMM-2011, Warszawa, 9–12 May, pp. 295–296, 2011.
  • [11] A. Marciniak, J. Korbicz, J. Kuś. Data pre-processing. [in:] W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz [Eds.], Vol. 6, Biocybernetics and Biomedical Engineering 2000, Neural Networks. Exit, Warszawa, 2000 [in Polish].
  • [12] T. Masters. Practical neural networks recipes in C++, Polish ed. by WNT, Warszawa, 1996.
  • [13] Neural network toolbox for use with Matlab 7.6.0.324, User’s Guide, 2008.
  • [14] Release 11.0, Documentation for Ansys, 2007.
  • [15] M. Shanker, M.Y. Hu, M.S. Hung. Effect of data standardization on neural network training. Omega International Journal of Management Science, 24(4): 385–397, 1996.
  • [16] J.J. Shi. Reducing prediction error by transforming input data for neural networks. Journal of Computing in Civil Engineering, 14(2): 109–116, 2000.
  • [17] Z. Waszczyszyn Advances of soft computing in engineering. CISM Courses and Lectures, vol. 512, Springer, Wien/New York, 2010.
  • [18] Z. Waszczyszyn. Artificial neural networks in civil and structural engineering: ten years of research in Poland. Computer Assisted Mechanics and Engineering Sciences, 13(4): 489–512, 2006.
  • [19] Z. Waszczyszyn. Artificial neural networks in civil engineering: another five years of research in Poland. Computer Assisted Mechanics and Engineering Sciences, 18(3): 131–146, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a46a5f2f-977e-4ba1-95c4-06730b43264e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.