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A hybrid neuro-fuzzy classifier was development for sea-bottom identification from acoustic echoes. A
. multistage ANFIS structure was constructed and tested on data collected on 38kHz and 120kHz echosounder’s
frequencies. In multistage systems available data is processed in stages. The decisions about assigning a
bottom echo, represented by digitised echo envelope's parameters, to one of the classes is made hierarchically.
Firstly, an approximate decision is made based only on one set of input variables. The decision is then fine-
tuned by considering more and more factors, it is in following stages next parameters are taken under account
until the final decision, corresponding to the output class, is made. The proposed approach not only gives
better classification results, as compared to parallel ANFIS system, but also it demands less computation-

power.

1. Introduction

The non-invasive and fast hydroacoustic methods
for bottom typing have been the subject of extensive
research in the last decades. Creating an automatic
method for bottom identification based on analysis of
echoes’ envelopes is one of the main tendencies in the
subject of bottom-typing. Neural networks, which
have proven to be a very useful tool in many
applications of identification and classification
problems [3], as after training on the given set of data
they are able to generalise to an unknown data, has
been used also in bottom typing applications [4].
Also, as hydroacoustic data is often ambiguous and
partially available, fuzzy logic seams to be a perfect
complementary tool when dealing with it. That is
why the authors have been investigating advantages
of these methods by creating different types of neural
networks and fuzzy classifiers and checking them on
collected data. As the first attempt to use fuzzy logic
in the sea-bottom classification process the Fuzzy
Inference Systems (FIS) architecture was used [2],
[6]. The achieved results (62-67% of correct decision
ratc) were promising but the method has limitations.
Therefore the Adaptive Neuro-Fuzzy Inference

System (ANFIS) was chosen for further
investigation, as its main advantage is a possibility to
adapt itself to a given set of data. Firstly, a single
frequency data has been classified with the result of
about 70% of correct classification rate [5]. In
another approach multi-frequency data was
combined to check how the information acquired on
different operating frequencies could reinforce the
classification process. The classification results of
this method were of 84% [7].

In the paper a novel muitistage multi-frequency
fuzzy neural nelwork modcl is described and the
results of numcrous test are discussed. Parameters
extracted from the echoes collected on different
operating frequencies were processed sequentially
i.e. classification result of a preceding layer
influenced the decision made by the successive one.

2. Sugeno Adaptive Neuro-Fuzzy Inference
System’s Model

The adaptive neurd—fuzzy inference system
(ANFIS) based on the general architecture of fuzzy
inference system [3] is able to derive from the given
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data sets optimal shapes of membership functions and
number of fuzzy rules.

Classifiers investigated in this experiment are
based on the fundamental structure of the Sugeno
fuzzy inference system [3]. In the neuro-fuzzy
version of this model its structure is “hidden” in the
neural network, therefore the system adapts its
parameters in the learning process.

An example of two input Sugeno ANFIS model
structure is depicted in Fig. 1. The role of each
consecutive system's layer is as follows:

Layer 1. Nodes in this layer are adaptive with a
node function:

O =R I = 12
) (1)
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where x; and x; are the inputs and A; and B,; are
linguistic labels associated with each node. O
specifies the degree to which the given input.x; (or x;)
satisfies A = A}, A, B, B; The triangular-shape
membership functions are adopted for A, where {a, b,
¢} is the set of premise parameters:
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0 otherwise.

Layer 2. Nodes in this layer are fixed and their
outputs are the product of all incoming signals and
represent the tiring strength of a rule:

O =¥y =y (1)t (1) =12 &)
Layer 3. This layer’s nodes are adaptive with a

node function:
Oy, =w, [, =w,(px +q;x, +1) )
where w; is a firing strength for node i and {p;, g;, 1;}
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are so called consequent parameters of this node. The
last node in this layer computes a sum of all rules'
firing strengths.

Layer 4. Nodes in this layer are fixed and
compute the sum of all incoming signals:

O =2w/, (5)
(]
Layer 5. A single node in this layer calculates the
output signal according to the relation:
2iwifi

O, =

! 2w

The characteristic future of Sugeno ANFIS model
is that the output is calculated as a combination of the
firing strengths of the consequence i.e. the process of
defuzzyfication is not needed as the output value is
represented by a crisp number, not a fuzzy set. In the
multistage systems it leads to additional
computations as the intermediate results of one stage,
expressed as crisp values, must be firstly fuzzified
before passing them to the next classifier’s stage.

©)

3. Data and Experiment

Experimental data was acquired during acoustic
surveys in the Lake Washington using a single-beam
digital echosounder DT4000, operating on frequen-
cies of 38kHz and 120kHz. The pulse duration was
0.4 ms and sampling rate was 41.66kHz.

Four types of sediments were represented in the
collected data - mud, soft sand, hard sand and rock.

A set of parameters was extracted from a digitised
echo (Fig.2): 1) Energy of the leading part of the first
echo (Bottom Roughness Signature), referred to as
El; 2) Amplitude of the second echo (Bottom Hard-
ness Signature), referred to as A2. In this way for
each pair of echoes (one collected on the frequency of
38kHz, the other — on 120kHz) four parameters were
retrieved and they will be referred 1o as 38kHz(E1),
38kHz(A2), 120kHz(E1) and 120kHz(A2).

Layor3
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Fig. 1. ANFIS architecture for a two-input fist-order Sugeno fuzzy model.



Two types of Sugeno ANFIS classifiers were
constructed using MATLAB [1} neuro-fuzzy toolbox
and checked on available data. The first of them had a
parallel structure, the other was a multistage
classifier.
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Fig. 2. Graphical interpretation of the parameters
extracted from the bottom echo.

All classifiers were trained on a training
(learning) set and their generalisation capacity was
check on testing data. The learning set counted 200
records and testing set had 645 records.

3.1 Parallel (single stage) Fuzzy Neural Network
Structure

For comparison a parallel (single stage) system
based on the Sugeno structure was built, as shown in
Fig. 3. This kind of ANFIS structure we investigated
extensively in [7] and [5] by the authors. In the
quoted experiment NEFClass classification system
was used, here for uniformity, the system was re-built
using MATLAB Neuro-fuzzy Toolbox. It consisted
of 4 input nodes, as there were four parameters

(38kHz - El and A2 and 120kHz - E1 and A2) as
these parameters were fed into the system
simultaneously, and one output node, corresponding
to an output class. The system had 256 rules and
(256*5)=1280 consequent parameters.

3.2 Serial (multistage) Fuzzy Neural Network
Structure

Creating a multistage classifier was the main
objective of the experiment.

The basic multistage ANFIS structure is depicted
in Fig. 4. The input variables have becn divided into
M sets and each of them is fed to an individual
reasoning stage (module) which corresponds to a
single-stage ANFIS introduced in chapter 2.1.
Therefore there are totally M single-stage ANFIS
models involved in a serial manner and the fuzzy
inference is carried out stage by stage [2].

ytk) (k<M) is the intermediate variable which

represents the output from stage k as well as the input
to stage k+ 1. This kind o procedure can be compared
to the mechanism of human reasoning. It is quite
common that we consider some factors (input
variables) first and made an approximate decision,
corresponding to the intermediate variables here. The
decision is then fine-tuned by considering more and
more factors until the final decision, corresponding to
the output variable, is made. )
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Fig. 4. Basic structure of the Sugano ANFIS adopted for a multistage system.
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As this model is based on Sugano ANFIS model,
the /™ fuzzy rule in stage &>/ has the following form:

Rule”  If (x" is AL - x¥ is A yand (y* ™" is B )

(7)
'n
Yy _ k) (=1} (k) (k) (k)
THEN y* =clt), |y +Zc ey
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where:

e x.(k"

b . e
;i@ input variable in stage k.

. A,.(IL;.): fuzzy term of the i input variable appearing

in the /" rule of stage £.

e 1, : number of input variables used in stage k.
k). . " s

e y " :single cutput variable in stage k.

. B(;-k_l) : fuzzy term of y(k—” in ™ rule of stage .

k .
. ijJ: consequent paramelers in stage k,

corresponding to the parameters p;, q; and r; in the
equation (4).

Two types of multistage ANFIS were built: two-
slage (k = 2) and four-stage (k = 4) classifiers.

In the case of k = 2 the input parameters were
divided into two sets. The first stage was fed with E1
and A2 parameters of one frequency and the second
stage was fed with the other two parameters. In both
stages (16+96)=112 rules werc constructed and
(16*3+96*4)=432 consequent parameters. Both
sequences of input signals were tried i.e. firstly the
38kHz parameters were processed by the first stage
and then 120kHz in the second. In the next trial this
sequence was inverted.

In the case of k = 4, the input parameters were
divided into four sets. It gave 24 combination of
sequence of introducing them to the system. It means
that in each stage the decision about the output value
was based only on one parameter and in after the first
stage also on the intermediate parameter. Each
system had (4+24*3)=76 rules and (8+24*3*3)=224
consequent parameters.

4. Results

The results of classifications were recorded both
in the learning and testing process. In the multistage
systems results of classification were also monitored
after each stage. Confusion matrixes displaying
behaviour of the parallel system, two-stage classifier
and four different variations of the four-stage ANFIS
systems are shown in Tables I+ XI.
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4.1 Parallel ANFIS

In this single stage classifier all four parameters
were processed simuitaneously.

In the learning process the percentage of correctly
classified echoes was 100%. In the testing process
the overall percentage of correctly classified echoes
was 84.5% as shown in Table .

Table I. Confusion matrix of the testing results of the
parallel double-frequency ANFIS.

HSand | Rock | SSand | Mud Not
Known
HSand | 72% 8.5% 2% 3.5% 14%
Rock | 13.7% | 68.4% | 4.2% | 2.1% | 11.6%
SSand 0% 2.5% | 95.5% 2% 0%
Mud 0% 0% 0% 96.7% | 3.3%

4.2 Two-stage ANFIS

Two classificers of that type were built. In the first
classifiers 38kHz parameters were processed first and
the result of this stage and the 120kHz parameters
were then used in the second stage. The percentage of
finally classified echoes was 77.2%. In the second
system the sequence of processed parameters was
inverted i.c. in the first stage - 120kHz (E1 and A2)
parameters were processed and in the second stage
38kHz (El and A2).

In the learning process the percentage of correctly
classified echoes was 78% after the first stage and
100 % after the second stage. In the testing process
the percentage of correctly classified echoes was 66%
after the first stage (Table II) and 89.2% after the
second stage {

Table II1).

Table II. Confusion matrix of the testing resulis after
the first stage of the two-siage ANFIS.

HSand | Rock | SSand | Mud Not
Known
HSand | 52.5% | 39.5% | 5.5% | 0.5% 2%
Rock | 21.1% | 70.5% | 6.3% 0% 2.1%
SSand | 4% 37% | 52% 5% 2%
Mud 0% 0% 0% 100% | 0%

Table 111, Confusion matrix of the testing results after
the second stage of the two-stage ANFIS.

HSand | Rock | SSand | Mud Not

Known
HSand | 835% | 3% 2% 1.5% | 10%
Rock 0% |88.4% | 2.1% 0% 9.5%
SSand | 0% 1% |89.5% | 0% 9.5%
Mud 0% 0% 0% |96.7% { 3.3%




4.3 Four-stage ANFIS I

Inputs: first stage - 38kHz(A2), second - 120kHz
(A2), third - 38kHz(E1) and fourth - 120kHz(E1).

In the learning process the percentage of correctly
classified echoes was 38.5% after the first stage,
87.5% after the second, 97% after the third and 98.5%
after the last stage.

In the testing process the percentage of correctly
classified echoes was 40.6% after the first stage
(Table V), 81.4% after the second (Table VI), 89.3%
after the third (Table VII) and 87.3% after the last
stage (Table VIII).

Table V. Confusion matrix of the testing results after
the first stage (38kHz A2) of the system I.

HSand | Rock | SSand | Mud Not

Known
HSand | 3.5% {87.5% | 6% 0% 3%
Rock 0% |579% |42.1% | 0% 0%
SSand | 0% 0% 100% | 0% 0%
Mud 0% 78% | 22% 0% 0%

Table VI. Confusion matrix of the testing results after
the second stage (120kHz A2) of the system I.

HSand | Rock | SSand [ Mud Not

Known
HSand | 60% 31% 1.5% | 0.5% 7%
Rock | 26.3% | 66.3% | 7.4% 0% 0%
SSand | 0% 3% 96% 1% 0%
Mud 0% 0% 0% 100% | 0%

Table VII. Confusion matrix of the testing results
after the third stage (38kHz E1) of the system .

(ED).

In the learning process the percentage of correctly
classified echoes was 58.5% after the first stage, 73%
after the second, 95.5% afier the third and 96% after
the last stage.

In the testing process the percentage of correctly
classified echoes was 58.5% after the first stage,
72.7% after the second, 84.3% after the third and
84.7 % after the last stage (Table IX).

Table IX. Confusion matrix of the testing results after
the last stage (120kHz E1) of the system I1.

HSand | Rock | SSand | Mud Not
Known
HSand | 70.5% | 19% 1.5% 0% 9%
Rock | 6.3% | 90.5% | 2.1% 0% 1.1%
SSand | 0.5% | 9.5% | 89.5% | 0.5% 0%
Mud 0% 0% 0% |93.3%| 6.7%

4.5 Four-stage ANFIS III

Input signals: first stage - 120kHz(E1), second -
38kHz(A2), third - 38kHz(E1) and fourth - 120kHz
(A2).

In the learning process the percentage of correctly
classified echoes was 58% after the first stage, 99.5%
after the second, 100% after the third and the last
stage.

In the testing process the percentage of correctly
classified echoes was 52.3% after the first stage,
95.7% after the second, 95.8 % after the third and the
last stage (Table X).

Table X. Confusion matrix of the testing results after
the third (38kHz El) and the last stage (120kHz A2)

Table VIII. Confusion matrix of the testing results
after the last stage (120kHz E1) of the system I.

HSand | Rock | SSand | Mud Not
Known
HSand | 65% 26% 0% 0% 9%
Rock | 6.3% {91.5% | 1.1% 0% 1%
SSand | 0.5% | 0.5% | 98% 0% 1%
Mud 0% 0% 0% 100% | 0%
4.4 Four-stage ANFIS II

Input signals: first stage - 38kHz(El), second -
38kHz(A2), third - 120kHz(A2) and fourth - 120kHz

HSand | Rock | SSand | Mud Not e e
Known HSand | Rock | SSand | Mud | Not
HSand | 73% 19% 0% | 0.5% 8% Known
Rock | 9.5% | 88.4% | 1.1% 0% 1% HSand | 87.5% | 9.5% 0% 1% 2%
SSand | 0% 1% 98% 1% 0% Rock | 1.1% | 97.9% | 0% 0% 1%
Mud 0% 0% 0% 100% 0% SSand 0% 0% 100% 0% 0%
Mud 0% 0% 0% 100% 0%

4.6 Four-stage ANFIS IV

Input signals: first stage - 120kHz(E1), second -
38kHz(El), third - 38kHz(A2) and fourth - 120kHz
(A2).

In the learning process the percentage of correctly
classified echoes was 58% after the first stage, 94%
after the second, 100% after the third and the last
stages.

In the testing process the percentage of correctly
classified echoes was 52.5% after the first stage,
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89.2% after the second, 95.7 % after the third and the
last stages (Table XI).

Table XI. Confusion matrix of the testing results after
the third (38kHz A2) and the last stage (120kHz A2)
of the system V.

HSand | Rock | SSand | Mud Not

Known
HSand | 90.5% | 4.5% 0% 0% 5%
Rock 0% 99% 0% 0% 1%

SSand | 0% 3% 96% 0% 1%
Mud 0% 0% 0% 100% | 0%

5. Conclusions

The main objective of this part of the authors’
investigation to create an automatic bottom-typing
tool for was to create a sequential i.e. multistage
classification system.

Double frequency data was available and four
parameters (two for each frequency) were extracted
from the digitised echoes’ envelopes and used as the
input parameter of the classifiers. Acoustical echoes
of four types of sediments were present in the
collected data.

Two versions of sequential systems were built. In
the two-stage systems the correct classification rate
was up to 89%, in four-stage systems this value
varicd between 85% to 95% depending on the
processing sequence of parameters. For comparison
parallel ANFIS was also created and its
generalisation behaviour did not exceed 85%.

These results show that introduced multistage
solution seams to be a promising solution in sea-bed
classification problems. Not only it gives better
results but also reduces required computation power.
In the parallel structure there were 256 rules created
and 12480 parameters had to be tuned. For
comparison, in the two-layer multistage classifier
there were 112 rules and only 434 parameters, and in
the [our-layer one only 76 rules were created and only
224 parameters had to be adjusted. Even this amount
can be reduced, as the main improvement of the
classification results is observed after the second or
third layer and a parameter processed in the fourth
layer doesn’t enhance the results a lot. Therefore it
might be possible to climinated one stage, but this
will be investigated further.
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