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A hybrid neuro-fuzzy classifier was development for sea-bottom identification from acoustic echoes. A
multistage ANFIS structure was constructed and tested 011 data collected on 38kHz and 120kHz echosounder's
frequencies. In multistage systems available data is processed in stages. The decisions about assigning a
bot/om echo, represented by digitised echo envelope 's parameters. to one of the classes is made hierarchically.
Firstly, an approximate decision is made based only 011 one set oj input variabies. The decision is then fine-
tuned by considering more and more factors, it is in following stages next parameters are taken under account
until the fina/ decision, corresponding 10 the output class. is made. The proposed approach nOI onły gives
better classification results, as compared 10 paralleI ANFlS system, but a/sa it demands less computation-
power.

l. Introduction

The non-invasive and fast hydroacoustic mcthods
for bottom typing have been the subject of extensive
research in the last decades. Creating an automatic
method for bottom identification based on analysis of
echoes' envelopes is one ofthe main tendencies in the
subject of bottom-typing. Neural networks, which
have proven to be a very useful to ol in many
applications of identification and classification
problems [3]. as after training on the given set of data
they are able to generalise to an unknown data, has
been used also in bottom typing applications [4].
Also, as hydroacoustic data is often ambiguous and
partially available, fuzzy logic seams to be a perfect
complementary tool when dcaling with it. That is
why the authors have been investigating advantages
of these methods by creating different types of neural
networks and fuzzy classifiers and checking them on
eolleeted data. As the first attempt to use fuzzy logie
in the sea-bottom classification process the Fuzzy
Inference Systems (FIS) architecture was used [2],
(61. The achieved results (62-67% of correct decision
ratc) we re promising but the method has limitanons.
Therefore the Adaptive Neuro-Fuzzy lnference

System (ANFIS) was chosen for further
investigation, as its main advantage is a possibility to
adapt itself to a given set of data. First1y, a single
frequency data has been classified with the result of
about 70% of correct classification rale (5]. In
another approach multi-frequency data was
combined to check how the information acquired on
different operating frequencies could reinforce the
classifieation process. The classification resuJts of
this method were of84% [7].

In the paper anovel multistage multi-frequency
fuzzy neural network model is described and the
results of numcrous test ani discussed. Parameters
extractcd from the echoes collected on different
operating frequencies were processed sequentially
i.e. c1assification result of a preceding layer
influcnced the decision made by the successive one.

2. Sugeno Adaptive Neuro-Fuzzy Inference
System's Model

The adaptive neuro-Iuzzy infcrence system
(ANFIS) based on the generaJ architecture of fuzzy
inferencc system [3] is able to derive from the given
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data sets optirnal shapes of membership functions and
num ber of fuzzy rules.

Classifiers investigated in this experiment are
based on the fundamental structure of the Sugeno
fuzzy inference system [3]. In the neuro-fuzzy
version of this model its structure is "hidden" in the
neural network, therefore the system adapts its
parameters in the learning process.

An example of two input Sugeno ANFIS model
structure is depicted in Fig. l. The role of each
consecutive systern's layer is as follows:

Layer l. Nodes in this layer are adaptive with a
node function:

Ol,; = Jl AJ (XI ), i = 1,2

Ol,; = JlB
i
_
2

(x2), i = 3.4

where x, and X2 are the inputs and A; and B;.z are
linguistic labeIs associated with each node. 0u
specifies the degree to which the given input r, (or X2)

satisfies A = A/, Az, B/. B2• Thc triangular-shape
membership functions are adopted for A. where {a. b.
c) is the set of premise parameters:
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O otherwise.

Layer 2. Nodes in this layer are fixed and their
outputs are the produet of all incoming signa1s and
represent the tiring strength of a rule:

Layer 3. This layer 's nodes are adaptive with a
node function:

where W; is a firing strength for nodc i and [p., q., r.]

are so called consequent parameters of this node. The
last node in this layer computes a sum of all rules'
firing strengths.

Layer 4. Nodes in this layer are fixed and
compute the sum of all incoming signals:

(5)

Layer 5, A single node in this layer calculates the
output signal according to the relation:

° _L;wJ;
5,1 - L,jW

i
(6)

(I)

The characteristic future of Sugeno ANFIS model
is that the output is calcu1ated as a combination of the
firing strengths of the consequence i.e. the process of
defuzzyfication is not needed as the output value is
represented by a crisp num ber, not a fuzzy set. In the
multistage systems it leads to additional
computations as the intermediate resu1ts of one stage,
expressed as crisp values, must be firstly fuzzified
before passing them to the next c1assifier' s stage.

(2)

3. Data and Experiment

Experimental data was acquired during acoustic
surveys in the Lake Washington using a single-beam
digital echosounder DT4000, operating on frequen-
cies of 38kHz and 120kHz. The pu1se duration was
0.4 ms and sampling rate was 41.66kHz.

Four types of sediments were represented in the
collected data - mud, sof t sand, hard sand and rock.

(3)

A set of parameters was extracted from a digitised
echo (Fig.2): I) Energy of the leading part of the first
echo (Bottom Roughness Signaturei, referred to as
El; 2) Amp1itude of the second echo tBouom Hard-
ness Signaturey; referred to as A2. In this way for
each pair of echoes (one collected on the frequency of
38kHz, the other - on 120kHz) four parameters were
retrieved and they will be referred to as 38kHz(E I),
38kHz(A2), 120kHz(E I) and 120kHz(A2).

(4)

y

Fig. l. ANFlS architecture for a two-input fist-order Sugeno fuu:y model.
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Two types of Sugeno ANFIS c1assifiers were
constructed using MATLAB [I) neuro-fuzzy toolbox
and checked on available data. The first of them had a
parallei structure, the other was a multistage
classifier.

-40t~i A I
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Fig. 2. Graphical interpretation of the parameters
extractedfrom the bottoni echo.

AIl classifiers were trained on a training
(learning) set and their generalisation capacity was
check on testing data. The learning set counted 200
records and testing set had 645 records.

3.1 Paralle! (single stage) Fuzzy Neural Network
Structure

For comparison a parallel (single stage) system
based on the Sugeno structure was built, as shown in
Fig. 3. This kind of ANFIS structure we investigated
extensively in [7] and [5] by the authors. In the
quoted experiment NEFClass classification system
was used, here for uniformity, the system was re-built
using MATLAB Neuro-fuzzy Toolbox. It consisted
of 4 input nodes, as there were four parameters

tnpUl Inputmf

Fig. 3. Structure of a parallel ANFIS.

).1''''1)

Stage k (k>1)
l,... ._.__. , ._.J

(38kHz - El and A2 and 120kHz - El and A2) as
these parameters were fed into the system
simultaneously, and one output node, corresponding
to an output class, The system had 256 rules and
(256*5)= 1280 consequent pararneters.

3.2 Serial (multistage) Fuzzy Neural Network
Structure

Creating a multistage classifier was the main
objective ofthe experimcnt.

The basie multistage ANFIS structure is depicted
in Fig. 4. The input variabIes have been divided into
M sets and each of them is fed to an individual
reasoning stage (module) which corresponds to a
single-stage ANFIS introduced in chapter 2.1.
Therefore there are totally M single-stage ANFIS
model s involved in a serial marmer and the fuzzy
inference is carried out stage by stage [2].

ik
) (k<M) is the intermediate variable which

represents the output from stage k as well as the input
to stage k+ I. This kind o procedure can be compared
to the mechanism of hurnan reasoning. It is quite
common that we eon si der some factors (input
variabies) first and made an approximate decision,
corresponding to the intermediate variabIes here. The
decision is then fine-tuned by considering more and
more factors until the final decision, corresponding to
the output variable, is made,

outpU1mf włłigllted .um out~ut

;1(1 �� 1)

.......---_ -._-'---'-
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Fig. 4. Basic structure ofthe Sugano ANFlS adoptedfor a multistage system.
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As this model is based on Sugano ANFIS model,
thel fuzzy rule in stage k» J has the following form:

Rule(k): fF(x") isA'I) .. ·xl') isA")and(y"-1l isB"-")
J J 1 1./ II. "!.} • J (7)

THEN v'" = Clk) .},"-Il +~ Clk' x") +c'""x+!.) .L. I.J I O,l
i=1

where:

• Xj(kl: i,I> input variable in stage k.

• A(k): fuzzy term of the i,h input variable appearingI.'
in thel rule of stage k.

• nk : number of input variabies used in stage k.

• y'kl: single output variable in stage k.

• B,k-l) : fuzzy term of y(k-l) inj'h rule of stage k ..I

• C,kJ: ccnscquent parameters in stage k,I.J

corresponding to the parameters pi, qi and r, in the
equation (4).

Two types of multistage ANFIS were built: two-
stage Ck = 2) and four-stage Ck = 4) c1assifiers.

In the case of k = 2 the input parametcrs were
divided into two sets. The first stage was fed with El
and A2 parameters of one frequency and the second
stage was fed with the other two parameters. In both
srages (16+96)= 112 rules were constructed and
(16*3+96*4 )=432 consequent parameters. Both
sequences of input signals were tried i.e. Iirstly the
38kHz parameters we re processed by the first stage
and then 120kHz in the second. In the next trial this
sequence was inverted.

In the case of k = 4, the input parameters werc
divided into four sets. It gave 24 combination of
sequence of introducing them to the system. It means
that in each stage the decision about the output value
was based oni y on one parameter and in after the first
stage also on the intermediate parameter. Each
system had (4+24*3)=76 rules and (8+24*3*3)=224
consequent parameters.

4. Results

The results of classifications were recorded both
in the learning and testing process. In the multistage
systcms results of classification were also monitored
after each stage. Confusion matrixes disp!aying
behaviour of the parallel system, two-stage classifier
and four different variations of the four-stage ANFIS
systems are shown in Tables I + XI.
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4.1 Parali el ANFIS

In this single stage c1assifier all four parameters
were processed simultaneously.

In the learning proces s the percentage of correctly
classified echoes was 100%. In the testing proces s
the overall percentage of correctly classified echces
was 84.5% as shown in Table 1.

Table l. Confusion matrix of the testing results of the
parallel double-frequency ANFJS.

HSand Rock sS and Mud Not
Known

HSand 72% 8.5% 2% 3.5% 14%
Rock 13.7% 68.4% 4.2% 2.1% 11.6%
SSand 0% 2.5% 95.5% 2% 0%
Mud 0% 0% 0% 96.7% 3.3%

4.2 Two-stage ANFIS

Two classifiers of that type were built. In the first
classifiers 38kHz parameters were processed first and
the result of this stage and the 120kHz parameters
were then used in the second stage. The percentage of
finally classified echoes was 77.2%. In the second
system the scquence of processed parameters was
inverted i.e. in the first stage - 120kHz CE I and A2)
parameters were processed and in the second stage
38kHz (El and A2).

In the learning process the percentage of correctly
classified echoes was 78% after the first stage and
100 % after the second stage. In the testing proces s
the percentage of correctly c1assified echoes was 66%
after the first stage (Tab Ie II) and 89.2% after the
second stage (

Table I/J).

Table II. Confusion matrix of the testing results after
thefirst stage ofthe two-stage ANFlS.

HSand Rock SSand Mud Not
Known

HSand 52.5% 39.5% 5.5% 0.5% 2%

Rock 21.1% 70.5% 6.3% 0% 2.1%
SSand 4% 37% 52% 5% 2%

Mud 0% 0% 0% 100% 0%

Table 11l. Confusion matrix of the testing results after
the second stage ofthe two-stage ANFlS.

HSand Rock SSand Mud Not
Known

HSand 83.5% 3% 2% 1.5% 10%

Rock 0% 88.4% 2.1% 0% 9.5%

SSand 0% 1% 89.5% 0% 9.5%

Mud 0% 0% 0% 96.7% 3.3%



4.3 Four-stage ANFIS I

Inputs: first stage - 38kHz(A2), second - 120kHz
(A2), third - 38kHz(E I) and fourth - 120kHz(E I).

In the learning proces s the percentage of correctly
classified echoes was 38.5% after the first stage,
87.5% after the second, 97% after the third and 98.5%
after the last stage.

In the testing process the percentage of correctly
classified echoes was 40.6% after the first stage
(Table V), 81.4% after the second (Table VI), 89.3%
after the third (Table VII) and 87.3% after the last
stage (Tab le VIII).

Table V. Confusion matrix of the testing results after
thefirst stage (38kHz A2) ofthe system I.

HSand Rock SSand Mud Not
Known

HSand 3.5% 87.5% 6% 0% 3%
Rock 0% 57.9% 42.1% 0% 0%
SSand O~ 0% 100% 0% 0%
Mud 0% 78% 22% 0% 0%

Table VI. Confusion matrix ofthe testing results after
the second stage (120kHz A2) oj the system I.

HSand Rock SSand Mud Not
Known

HSand 60% 31% 1.5% 0.5% 7%
Rock 26.3% 66.3% 7.4% 0% 0%
SSand 0% 3% 96% 1% 0%
Mud 0% 0% 0% 100% 0%

Table VII. Confusion matrix of the testing results
after the third stage (38kHz EJ) of the system t.

HSand Rock SSand Mud Not
Known

HSand 73% 19% 0% 0.5% 8%
Rock 9.5% 88.4% 1.1% 0% 1%

SSand 0% 1% 98% 1% 0%
Mud 0% 0% 0% 100% 0%

Table VIII. Conjusion matrix of the testing results
after the last stage (120kHz EJ) of the system I,

HSand Rock SSand Mud Not
Known

HSand 65% 26% 0% 0% 9%

Rock 6.3% 91.5% 1.1% 0% 1%

SSand 0.5% 0.5% 98% 0% 1%

Mud 0% 0% 0% 100% 0%

4.4 Four-stage ANFIS II

Input signals: first stage - 38kHz(E I), second .
38kHz(A2), third - 120kHz(A2) and fourth . 120kHz

(El).

In the learning process the percentage of correctly
classified echoes was 58.5% after the first stage, 73%
after the second, 95.5% after the third and 96% after
the last stage.

In the testing process the percentage of correctly
classified echoes was 58.5% after the first stage,
72.7% after the second, 84.3% after the third and
84.7% after the last stage (Table IX).

Tabie IX. Confusion matrix of the testing resuits after
the last stage (120kHz E l)oj the system II.

HSand Rock SSand Mud Not
Known

HSand 70.5% 19% 1.5% 0% 9%
Rock 6.3% 90.5% 2.1% 0% 1.1%

SSand 0.5% 9.5% 89.5% 0.5% 0%
Mud 0% 0% 0% 93.3% 6.7%

4.5 Four-stage ANFIS III

Input signals: first stage - 120kHz(E I), second -
38kHz(A2), third - 38kHz(E I) and fourth . 120kHz
(A2).

In the learning process the percentage of correctly
classified echoes was 58% after the first stage, 99.5%
after the second, 100% after the third and the last
stage.

In the testing process the percentage of correctly
classified echoes was 52.3% after the first stage,
95.7% after the second, 95.8% after the third and the
last stage (Tab le X).

Table X. Confusion matrix of the testing resu/ts after
the third (38kHz El) and the last stage (J20kHz A2)
of the system Ill.

HSand Rock SSand Mud Not
Known

HSand 87.5% 9.5% 0% 1% 2%

Rock 1.1% 97.9% 0% 0% 1%
SSand 0% 0% 100% 0% 0%
Mud 0% 0% 0% 100% 0%·

4.6 Four-stage ANFIS IV

Input signals: first stage - 120kHz(EI), second -
38kHz(EI), third - 38kHz(A2) and fourth - 120kHz
(A2).

In the learning proces s the percentage of correctly
classified echoes was 58% after the first stage, 94%
after the second, 100% after the third and the last
stages,

In thc testing process the percentage of correctly
classified echoes was 52.5% after the first stage,
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89.2% after the second, 95.7% after the third and the
last stages (Table XI).

Table Xl. Confusion matrix of the testing resu/ts after
the third (38kHz A2) and the last stage (120kHz A2)
of the system V.

HSand Rock SSand Mud Not
Known

HSand 90.5% 4.5% 0% 0% 5%
Rock 0% 99% 0% 0% 1%
SSand 0% 3% 96% 0% 1%
Mud 0% 0% 0% 100% 0%

5. Conclusions

The main objective of this part of the authors'
investigation to create an automatic bottom-typing
tool for was to create a sequential i .e. multistage
elassi fieation system.

Double frequency data was available and four
parameters (two for each frequency) were extracted
from the digitised echoes' envelopes and used as the
input parameter of the classifiers. Acoustical echoes
of four types of sediments were present in the
collected data.

Twa versions of scquential systems were built. In
the two-stage systems the correct classification rate
was up to 89%, in four-stage systems this value
varied between 85% to 95% depending on the
processing sequence of parameters. For cornparison
paralleI ANFIS was also created and its
generalisation behaviour did not exceed 85%.

These results show that introduecd multistage
solution seams to be a promising solution in sea-bed
classifieation problems. Not only it gives better
results but also reduees required eomputation power.
In the parali el structure there were 256 rules created
and 12480 parameters had to be tuned. For
comparison, in the two-layer multistage classifier
there were 112 rules and only 434 parameters, and in
the Iour-Iayer one only 76 rules were created and only
224 parameters had to be adjusted. Even this amount
can be redueed, as the main improvement of the
classification results is obscrved after the second ar
third layer and a parameter processed in the fourth
layer doesn 't enhance the results a lot. Therefore it
might be possible to eliminatcd one stage, but this
will be investigated further.
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