Identyfikatory
Warianty tytułu
Konferencja
„Mineral sorbents”, raw materials, power engineering, environmental protection, modern technologies : third scientific and technical conference : 18–19 September 2017, Cracow
Języki publikacji
Abstrakty
Adsorption is considered as one of the most promising technologies for CCS. Gas adsorption involves the separation of gaseous components from flue gas using solid adsorbents. The gaseous component, adsorbate, is adsorbed from the gas phase on a solid material. Regarding CO2 adsorption, it is important to consider the parameters, that is the high sorption capacity, CO2 selectivity, regeneration and stability in multiple cycles. New directions for the development of adsorbents are focused on increasing their capacity – for this purpose, amine impregnation is carried out. This paper presents a new approach to obtaining mesoporous material from fly ash and, based on this, a new physico-chemical adsorbent obtained by impregnation. The effectiveness of the process was confirmed by thermogravimetric analysis and FTIR infrared spectroscopy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
47--62
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
- NILU Polska Ltd., AGH Centre of Energy, 36 Czarnowiejska Av., 30-059 Krakow, Poland
autor
- Department of Thermal and Fluid Flow Machine, Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- Ho, M.T., Allinson, G.W., & Wiley, D.E. (2008). Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Industrial and engineering chemistry research 47(14), 4883-4890. DOI: 10.1021/ie070831e.
- Kumar, P., Mal, N., Oumi, Y., Yamana, K., & Sano, T. (2001). Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. Journal of Materials Chemistry 11, 3285-3290. DOI: 10.1039/B104810B.
- Majchrzak, A., & Majchrzak – Kucęba, I. (2013). Study of sorption capacity on various types of adsorbents depending on the temperature and CO2 content. In International Conference on Environment & Energy, 16 - 17 December 2013 (pp. 220-234). Colombo, Sri Lanka: International Centre for Research and Development.
- Majchrzak, A., & Nowak, W. (2017). Separation characteristics as a selection criteria of CO2 adsorbents. Journal of CO2 Utilization 17, 69-79. DOI: 10.1016/S2212-9820(17)30019-7.
- Morrison, R. T., & Boyd, R. N. (1985). Chemia organiczna Tom 1, Warszawa: Państwowe Wydawnictwo Naukowe. [in Polish]
- Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2012). Spektroskopowe metody identyfikacji związków organicznych, Warszawa: Wydawnictwo Naukowe PWN. [in Polish]
- Son, W-J., Choi, J-S., & Ahn, W-S. (2008). Adsorptive removal of carbon dioxide using polyethylenimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials 113(1-3), 31-40. DOI: 10.1016/j.micromeso.2007.10.049.
- Xu, X., Song, C., Andrésen, J. M., Miller, B. G., & Scaroni, A. W. (2003). Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Miroporous and Mesoporous Materials 62(1-2), 29-45. DOI: 10.1016/S1387-1811(03)00388-3.
- Xu, X., Song, C., Miller, B. G., & Scaroni, A. W. (2005). Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by novel nanoporous “molecular basket” adsorbent. Fuel Processing Technology 86(14-15), 1457-1472. DOI: 10.1016/j.fuproc.2005.01.002.
- Yang, Q., Guillerm, V., Ragon, F., Wiersum, A. D., Llewellyn, P. L., Zhong, C., Devic, T., Serrec, C., & Maurin, G. (2012). CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications 48, 9831-9833. DOI: 10.1039/C2CC34714H.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4691e56-4265-4682-b868-8f7cd540983d