PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the active area position in a nitride tunnel junction vertical-cavity surface-emitting laser on its emission characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of numerical simulations of a nitride semiconductor vertical-cavity surface-emitting laser (VCSEL) with a tunnel junction. The modeled laser is based on a structure created at the University of California in Santa Barbara. The analysis concerns the impact of the position of laser’s active area on the emitted power. Both small detunings from the standing waveanti-node, and positioning of the active area at different anti-nodes are considered.
Czasopismo
Rocznik
Strony
301--310
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
  • [1] TAKAOKA K., ISHIKAWA M., HATAKOSHI G., Low-threshold and high-temperature operation of InGaAlP-based proton-implanted red VCSELs, IEEE Journal of Selected Topics in Quantum Electronics 7(2), 2001, pp. 381–385, DOI:10.1109/2944.954154.
  • [2] HIGUCHI Y., OMAE K., MATSUMURA H., MUKAI T., Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection, Applied Physics Express 1(12), 2008, article 121102, DOI:10.1143/APEX.1.121102.
  • [3] LU T.C., KAO C.C., KUO H.C., HUANG G.S., WANG S.C., CW lasing of current injection blue GaN-based vertical cavity surface emitting laser, Applied Physics Letters 92(14), 2008, article 141102, DOI:10.1063/1.2908034.
  • [4] FORMAN C.A., LEE S., YOUNG E.C., KEARNS J.A., COHEN D.A., LEONARD J.T., MARGALITH T., DENBAARS S.P., NAKAMURA S., Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact, Applied Physics Letters 112(11), 2018, article 111106, DOI:10.1063/1.5007746.
  • [5] KEARNS J.A., BACK J., COHEN D.A., DENBAARS S.P., NAKAMURA S., Demonstration of blue semipolar (2 0 21) GaN-based vertical-cavity surface-emitting lasers, Optics Express 27(17), 2019, pp. 23707–23713, DOI:10.1364/OE.27.023707.
  • [6] GRECO G, IUCOLANO F, ROCCAFORTE F., Ohmic contacts to gallium nitride materials, Applied Surface Science 383, 2016, pp. 324–345, DOI:10.1016/j.apsusc.2016.04.016.
  • [7] KURAMOTO M., KOBAYASHI S., AKAGI T., TAZAWA K., TANAKA K., SAITO T., TAKEUCHI T., High-power GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors, Applied Sciences 9(3), 2019, article 416, DOI:10.3390/app9030416.
  • [8] SARZAŁA R.P., NAKWASKI W., Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation, Journal of Physics: Condensed Matter 16(31), 2004, pp. S3121–S3140, DOI:10.1088/0953-8984/16/31/009.
  • [9] KUC M., SARZAŁA R.P., NAKWASKI W., Thermal crosstalk in arrays of III-N-based lasers, Materials Science and Engineering: B 178(20), 2013, pp. 1395–1402, DOI:10.1016/j.mseb.2013.08.013.
  • [10] SARZAŁA R.P., ŚPIEWAK P., WASIAK M., Influence of resonator length on performance of nitride TJ VCSEL, IEEE Journal of Quantum Electronics 55(6), 2019, article 2400509, DOI:10.1109/JQE.2019.2946386.
  • [11] XU D., TONG C., YOON S.F., FAN W., ZHANG D.H., WASIAK M., PISKORSKI Ł., GUTOWSKI K., SARZAŁA R.P.,NAKWASKI W., Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 μm optical-fibre communication, Semiconductor Science and Technology 24(5),2009, article 055003, DOI:10.1088/0268-1242/24/5/055003.
  • [12] WASIAK M., ŚPIEWAK P., MOSER P., WALCZAK J., SARZAŁA R.P., CZYSZANOWSKI T., LOTT J.A., Numerical model of capacitance in vertical-cavity surface-emitting lasers, Journal of Physics D: Applied Physics 49(17), 2016, article 175104, DOI:10.1088/0022-3727/49/17/175104.
  • [13] SARZAŁA R.P., SOKÓŁ A.K., KUC M., NAKWASKI W., How to enhance a room-temperature operation of diode lasers and their arrays, Optica Applicata 46(2), 2016, pp. 213–226, DOI:10.5277/oa160206.
  • [14] LEONARD J.T., YOUNG E.C., YONKEE B.P., COHEN D.A., MARGALITH T., DENBAARS S.P., SPECK J.S., NAKAMURA S., Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact, Applied Physics Letters 107(9), 2015, article 091105, DOI:10.1063/1.4929944.
  • [15] KURAMOTO M., SASAOKA C., FUTAGAWA N., NIDO M., YAMAGUCHI A.A., Reduction of internal loss and threshold current in a laser diode with a ridge by selective re-growth (RiS-LD), Physica Status Solidi (A) 192(2), 2002, pp. 329–334, DOI:10.1002/1521-396X(200208)192:2%3C329::AID-PSSA329%3E3.0.CO;2-A.
  • [16] PERLIN P., CZYSZANOWSKI T., MARONA L., GRZANKA S., KAFAR A., STANCZYK S., SUSKI T., LESZCZYŃSKI M., BOĆKOWSKI M., MUZIOŁ G., KUC M, SARZAŁA R.P., Highly doped GaN: a material for plasmonic claddings for blue/green InGaN laser diodes, Proceedings of SPIE 8262, 2012, article 826216, DOI:10.1117/12.906866.
  • [17] HAMAGUCHI T., TANAKA M., MITOMO J., NAKAJIMA H., ITO M., OHARA M., KOBAYASHI N., FUJII K., WATANABE H., SATOU S., KODA R., NARUI H., Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror, Scientific Reports 8(1), 2018, article 10350, DOI:10.1038/s41598-018-28418-6.
  • [18] SHEN C.C., LU Y.T., YEH Y.W., CHEN C.Y., CHEN Y.T., SHER C.W., LEE P.T., SHIH Y.H., LU T.C.,WU T., CHIU C.H., KUO H.C., Design and fabrication of the reliable GaN based vertical-cavity surface-emitting laser via tunnel junction, Crystals 9(4), 2019, article 187, DOI:10.3390/cryst9040187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a466cbfc-d8f5-4e78-8d06-1ae184bd3243
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.