PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving security of lightweith SHA-3 against preimage attacks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we describe the SHA-3 algorithm and its internal permutation in which potential weaknesses are hidden. The hash algorithm can be used for different purposes, such as pseudo-random bit sequences generator, key wrapping or one pass authentication, especially in weak devices (WSN, IoT, etc.). Analysis of the function showed that successful preimage attacks are possible for low round hashes, protection from which only works with increasing the number of rounds inside the function. When the hash function is used for building lightweight applications, it is necessary to apply a small number of rounds, which requires additional security measures. This article proposes a variant improved hash function protecting against preimage attacks, which occur on SHA-3. We suggest using an additional external randomness sources obtained from a lightweight PRNG or from application of the source data permutation.
Twórcy
autor
  • Warsaw University of Technology, Poland
autor
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document, http: //keccak.noekeon.org/Keccak-main-2.1.pdf.
  • [2] FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, csrc.nist.gov/publications/drafts/fips202/fips_202_draft.pdf.
  • [3] Najjar M., Stokłosa J., The nonlinearity of homogenous Boolean functions and the design of strong cryptographic algorithms. Burakowski W., Wieczorek A. (eds.), Regional Conference on Military Communication and Information Systems. Zegrze 1999, Vol. 2, 71-76.
  • [4] Chengxin Qu, Seberry J., Pieprzyk J., Homogenous bent functions (preprint), University of Wollongong, NSW, Australia 1998.G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955. (references)
  • [5] Bertoni G., Daemen J., Peeters M., and Assche G., Sponge-based pseudo-random number generators, CHES 2010: Cryptographic Hardware and Embedded Systems, CHES 2010 p.33-47.
  • [6] Borowski M., Gliwa R., Rozwój algorytmów uwierzytelnionego szyfrowania, www.wil.waw.pl/art_prac/2014/PTiWT_8-9_14_3.pdf.
  • [7] https://en.bitcoin.it/wiki/Hashcash
  • [8] Dinur I., Security Evaluation of SHA-3, https://www.cryptrec.go.jp/ estimation/techrep_id2402.pdf.
  • [9] Dinur I., P Morawiecki P., J Pieprzyk J., Srebrny M., Straus M., Cube Attacks and Cube-attack-like Cryptanalysis on the Round-reduced Keccak Sponge Function, https://eprint.iacr.org/2014/736.
  • [10] Morawiecki P., Malicious Keccak, https://eprint.iacr.org/2015/1085.
  • [11] Morawiecki P., Pieprzyk J., Srebrny M., and Straus M.: Preimage attacks on the round-reduced Keccak with the aid of differential cryptanalysis, https://eprint.iacr.org/2013/561.
  • [12] Dinur I., Morawiecki P., J Pieprzyk J., Srebrny M., Straus M., Practical Complexity Cube Attacks on Round-Reduced Keccak Sponge Function, https://eprint.iacr.org/2014/259.pdf.
  • [13] Morawiecki P., Pieprzyk J and Srebrny M. Rotational cryptanalysis of round-reduced Keccak. IACR Cryptology ePrint Archive, 20 12, pp. 546-562.
  • [14] Chang D., Kumar A., Morawiecki P., Sanadhya S., 1st and 2nd Preimage Attacks on 7, 8 and 9 Rounds of Keccak-224,256,384,512, http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/documents/chang_paper_sha3_2014_workshop.pdf.
  • [15] Najjar M., Stokłosa J., Petra-2 cryptographic hash function, NATO Regional Conference on Military Communications and Information Systems 2001, Zegrze, 2001, vol. I, 317-320.
  • [16] Lathrop J., Cube Attacks on Cryptographic Hash Functions, http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1653&context=theses.
  • [17] Sekar G., Bhattacharya S., Practical (Second) Preimage Attacks on TCS SHA-3, https://eprint.iacr.org/2013/150.pdf.
  • [18] NIST SP 800-22rev1a, A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications, April 27, 2010.
  • [19] https://csrc.nist.gov/projects/hash-functions/sha-3-project
  • [20] Dinur I., and Shami A, Cube Attacks on Tweakable Black Box Polynomials, https://eprint.iacr.org/2008/385.pdf.
  • [21] Borowski M., Cryptographic Applications of the Duplex Construction, https://journals.umcs.pl/ai/article/download/3389/2583.
  • [22] Sekar G., Bhattacharya S., Practical (Second) Preimage Attacks on TCS SHA-3, https://eprint.iacr.org/2013/150.pdf.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4663626-4bf1-4787-ab40-c8b3f0cea5ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.