Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (Xn)n∈N and (Yn)n∈N be two sequences of i.i.d. random variable ξ which are independent of each other and all have the distribution of a positive random variable ξ with density fξ . We study weighted strong laws of large numbers for the ratios of the form [wzór]1 in the cases when IEξ = ∞ or limx→0+ fξ (x) = 0 or fξ is unbounded. This research complements some results known so far.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
219--225
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics Marie Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
- [1] A. Adler, Exact strong laws, Bull. Inst. Math. Acad. Sinica 28 (2000), 141-166.
- [2] A. Adler, Laws of large numbers for ratios of uniform random variables, Open Math. 13 (2015), 571-576.
- [3] P. Kurasiński and P. Matuła, Exact weak laws of large numbers with applications to ratios of random variables, Appl. Math. (Warsaw) 47 (2020), 59-66.
- [4] P. Kurasiński, Exact laws of large numbers with applications, PhD thesis, 2022.
- [5] P. Matuła, A. Adler and P. Kurasi ́nski, On exact strong laws of large numbers for ratios of random variables and their applications, Comm. Statist. Theory Methods 49 (2020), 3153-3167.
- [6] P. Matuła, P. Kurasi ́nski and A. Adler, Exact strong laws of large numbers for ratios of the smallest order statistics, Statist. Probab. Lett. 152 (2019), 69-73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a460c0a5-b0a9-46e4-971a-e0fbc9aee6d2