Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Estymacja kształtu ostrza AFM za pomocą struktury kalibracyjnej „Cross-Forrest”
Języki publikacji
Abstrakty
The “Cross-Forrest” tip shape calibration standard for regularized blind tip reconstruction has been fabricated and investigated. The confirmation of previously reported theoretical findings is shown. However, the KSVD-OMP algorithm of images denoising has been extended by additional group sparsity penalty and Shi Tomasi corner detection algorithm with 100 nm size window for cross concave corners needed to be applied. The comparison of SEM direct tip imaging with 3D shapes reconstructed on the basis of filtered and unfiltered AFM images are shown and the qualitative agreement has been confirmed. The optimization of fabrication technology of “Cross-Forrest” structure is required to allow quantitative tip shape measurements. It should limit the uncertainty of the initial shape of an AFM tip, and the resulting uncertainty of final shape which is the improved version of the initial one.
Wykonano i zbadano strukturę „Cross-Forrest” służącą do kalibracji kształtu ostrza metodą regularyzowanej ślepej rekonstrukcji. Potwierdzono prezentowane w literaturze wyniki teoretyczne. Wymagało to jednak rozszerzenia algorytmu filtracji obrazów KSVD-OMP o dodatkową funkcję kary w postaci wskaźnika grupowej rzadkości reprezentacji oraz zastosowania algorytmu Shi-Tomasiego z 100 nm oknem do detekcji wklęsłych narożników krzyża. Porównano obrazy SEM ostrzy z ich trójwymiarowymi rekonstrukcjami kształtu i potwierdzono zgodność jakościową. Do uzyskania zgodności ilościowej niezbędna jest jednak optymalizacja technologii wykonania struktur „Cross-Forrest”, która pozwoli ograniczyć niepewność oszacowania kształtu początkowego ograniczającą niepewność oszacowania kształtu finalnego.
Rocznik
Tom
Strony
41--46
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Institute for Sustainable Technologies - National Research Institute, Radom, Poland
- Faculty of Microsystems Electronics and Photonics, Wrocław University of Science and Technology, Poland
autor
- Faculty of Microsystems Electronics and Photonics, Wrocław University of Science and Technology, Poland
- Physikalisches Institut, Universität Würzburg, Germany
autor
- Faculty of Microsystems Electronics and Photonics, Wrocław University of Science and Technology, Poland
autor
- Institute of Electron Technology, Warsaw, Poland
autor
- Institute of Electron Technology, Warsaw, Poland
Bibliografia
- 1. Danzebrink H.U., Koenders L., Wilkening G., Yacoot A., Kunzmann H.: Advances in Scanning Force Microscopy for Dimensional Metrology. CIRP Annals – Manufacturing Technology, 2006, 55(2), pp. 841-878.
- 2. Dongmo S., Troyon S., Vautrot M., Delain P., Bonnet E.: Blind restoration methods of scanning tunneling and atomic force microscopy images. Journal of Vacuum Science & Technology B, 1996, 14, pp. 1552-1556.
- 3. Williams P.M., Shakesheff K.M., Davies M.C., Jackson D.E., Roberts C.J., Tendler S.J.B.: Blind reconstruction of scanning probe image data. Journal of Vacuum Science & Technology B, 1996, 14(2), pp. 1557-1562.
- 4. Villarubia J.S.: Morphological estimation of tip geometry for scanned probe microscopy. Surface Science, 1994, 321(3), pp. 287-300.
- 5. Villarubia J.S.: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4), pp. 425-454.
- 6. Williams P.M., Davies M.C., Roberts C.J., Tendler S.J.B.: Noise-compliant tip-shape derivation. Applied Physics A, 1998, 66, pp. S911-S914.
- 7. Todd B.A., Eppell S.J.: A method to improve the quantitative analysis of SFM images at the nanoscale. Surface Science, 2001, 491, pp. 473-483.
- 8. Tian F., Qian X., Villarrubia J.S.: Blind estimation of general tip shape in AFM imaging. Ultramicroscopy, 2008, 109, pp. 44-53.
- 9. Jóźwiak G., Henrykowski A., Masalska A., Gotszalk T.: Regularization mechanism in blind tip reconstruction procedure. Ultramicroscopy, 2012, 118, pp. 1-10.
- 10. Flater E.E., Zacharakis-Jutz G.E., Dumba B.G., White I.A., Clifford C.A.: Towards easy and reliable AFM tip shape determination using blind tip reconstruction. Ultramicroscopy, 2014, 146, pp. 130-143.
- 11. Xu L., Ding Y., Guo Y., Wan J., Wu S., Hu X.: Optimal samples for precision blind tip reconstruction. In: AOPC 2015: Micro/Nano Optical Manufacturing Technologies; and Laser Processing and Rapid Prototyping Techniques, 2015, Beijing, China. Proceedings of SPIE, 2015, 9673, 96730I.
- 12. Wan I., Xu L., Wu S., Hu X.: Investigation on Blind Tip Reconstruction Errors Caused by Sample Features. Sensors, 2014, 14(12), pp. 23159-23175.
- 13. JóźwiakG.:Noise reduction by sparse representation in learned dictionaries for application to blind tip reconstruction problem. Measurement Science and Technology, 2017, 28(3), pp. 034008.
- 14. Shi J., Tomasi C.: Good Features to Track. In: Conference on Computer Vision and Pattern Recognition, Seattle (USA), 21-23 June 1994. IEEE, 1994, pp. 593-600.
- 15. Aharon M., Elad M., Bruckstein A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11), pp. 4311-4322.
- 16. Pati Y.C., Rezaiifar R., Krishnaprasad P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove (USA), 1-3 Nov. 1993. IEEE, 1993, 1, pp. 40-44.
- 17. Rubinstein R., Zibulevsky M., Elad M.: 2008 Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit. [Online]. Technion-Computer Science Department - Technical Report, 2008. [Accessed 3 December 2018]. Available from: www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
- 18. Tropp J.A.: Algorithms for simultaneous sparse approximation. Signal Processing, 2006, 86, pp. 572-602.
- 19. Mairal J., Bach F., Ponce J., Sapiro G., Zisserman A.: Non-local sparse models for image restoration. In: 12th International Conference on Computer Vision, Kyoto (Japan), 29 Sept.-2 Oct. 2009. IEEE, 2009, 11367883.
- 20. David A., Vassilvitskii S.: K-means++: The Advantages of Careful Seeding. In: 18th annual ACM-SIAM symposium on Discrete algorithms (SODA), New Orleans, Louisiana, 2007. Proceedings, 2007, pp. 1027-1035.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a45fe339-ca38-40c7-81cd-4247727d3d51