PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of ultrasound signal parameters on sonoluminescence light intensity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Topics of this article concern the study of the fundamental nature of the sonoluminescence phenomenon occurring in liquids. At the Institute of Electrical Power Engineering at Opole University of Technology the interest in that phenomenon known as secondary phenomenon of cavitation caused by ultrasound became the genesis of a research project concerning acoustic cavitation in mineral insulation oils in which a number of additional experiments performed in the laboratory aimed to determine the influence of a number of acoustic parameters on the process of the studied phenomenona. The main purpose of scientific research subject undertaken was to determine the relationship between the generation of partial discharges in high-voltage power transformer insulation systems, the issue of gas bubbles in transformer oils and the generated acoustic emission signals. It should be noted that currently in the standard approach, the phenomenon of generation of acoustic waves accompanying the occurrence of partial discharges is generally treated as a secondary phenomenon, but it can also be a source of many other related phenomena. Based on our review of the literature data on those referred subjects taken, it must be noted, that this problem has not been clearly resolved, and the description of the relationship between these phenomena is still an open question. This study doesn’t prove all in line with the objective of the study, but can be an inspiration for new research project in the future in this topic. Solution of this problem could be a step forward in the diagnostics of insulation systems for electrical Power devices based on non-invasive acoustic emission method.
Rocznik
Strony
605--612
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Faculty of Electrical Engineering Automatic Control and Computer Science Institute of Electric Power Engineering, Opole University of Technology Prószkowska 76, 45-758 Opole, Poland
autor
  • Faculty of Electrical Engineering Automatic Control and Computer Science Institute of Electric Power Engineering, Opole University of Technology Prószkowska 76, 45-758 Opole, Poland
autor
  • Faculty of Electrical Engineering Automatic Control and Computer Science Institute of Electric Power Engineering, Opole University of Technology Prószkowska 76, 45-758 Opole, Poland
Bibliografia
  • 1] Brennen C., Cavitation and bubble dynamics. Oxford University Press, New York (1995).
  • [2] Knapp R., Daily J., Hammit F., Cavitation. McGraw Hill, New York (1970).
  • [3] Neppiras E., Acoustic cavitation. Phys. Rep. 61: 159-251 (1980).
  • [4] Neppiras E., Acoustic cavitation: an introduction. Ultrasonics 22: 25-28, (1984).
  • [5] Sliwiński A., Ultradźwięki i ich zastosowania. WNT, Warszawa (2001).
  • [6] Ciuti P., Dezhukunov N., Francescutto A. et al., Cavitation activity stimulation by low frequency field pulses. Ultrasonics Sonochemistry 7: 213-216 (2000).
  • [7] Iernetti G., Ciuti P., Calligaris F. et al., Cavitation threshold dependence on the rate of the transducer voltage variation. Ultrasonics 34: 193-195 (1996).
  • [8] Sokka S., Gauthier T., Hynynen K., Spatial control of cavitation: theoretical and experimental validation of a dual-frequency excitation method. Proceedings of IEEE Ultrasonics Symposium 23-27 Aug. 2: 878-881 (2004).
  • [9] Barber B., Hiller R., Lofstedt R. et al., Defining the unknows of sonoluminescence Phys. Rep. 181: 65-143 (1997).
  • [10] Matula T., Single-bubble sonoluminescence in microgravity. Ultrasonics 38: 559-565 (2000).
  • [11] Yasui K., Mechanism of single-bubble sonoluminescence. Phys. Rev. E 60(2): 1754-1758 (1999).
  • [12] Akhatov I., Vakhitova N., Topolnikov A. et al., Dynamics of laser-induced cavitation bubbles. Exper. Therm. and Fluid Sc. 26: 731-737 (2002).
  • [13] Ohl C., R Lindau O., Lauterborn W., Luminescence from spherically and aspherically callapsing laser induced bubbles. Phys. Rev. Lett. 80: 393-396 (1998).
  • [14] Elpiner I., Ultradźwięki działanie fizykochemiczne i biologiczne. PWN, Warszawa (1968).
  • [15] Suslick K., Acoustic cavitation and its chemical consequences. Phil. Trans. Roy. Soc. London A357: 335-353 (1999).
  • [16] Hoyt J., Effect of polymer additives on jet cavitation. J. Fluids Eng. – T. ASME 98(1): 106-112 (1976).
  • [17] Shima A., Tsujino T., Nanjo H., Miura N., Cavitation damage in polymer aqueous solution. J. Fluids Eng. – T. ASME 107: 134-138 (1985).
  • [18] Tsujino T., Cavitation damage and noise spectra in a polymer solution. Ultrasonics 25: 67-72 (1987).
  • [19] Allen J., Roy R., Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity. J. Acoust. Soc. Am. 108(4): 1640-1650 (2000).
  • [20] Allen J., Roy R., Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. J. Acoust. Soc. Am. 107(6): 3167-3178 (2000).
  • [21] Wójs K., Gudra T., Rędzicki R., Experimental research into the cavitation noise spectrum in water solutions of high molecular weight polymers. Ultrasonics 44: 350-359 (2006).
  • [22] Skokov V., Koverda V., Reshetnikov A., Vinogradov A., Power spectrum of fluctuation for ultrasonic cavitation process in glycerin. Thermophysics and Aeromechanics 14(1): 47-51 (2007).
  • [23] Shah Y., Pandit A., Moholkar V., Cavitation Reaction Engineering. Springer (1999).
  • [24] Lauterborn W., Cramer E., On the dynamics of acoustic cavitation noise spectra. Acoustica 49: 280- 287 (1981).
  • [25] Jomni F., Aitken F., Denat A., Dynamics of microscopic bubbles generated by corona discharge In insulating liquids: influence of pressure. Journal of Electrostatics 47: 49-59 (1999).
  • [26] Boczar T., Zmarzły D., Szmechta M., Investigation of multi-bubble sonoluminescence light intensity in water. Molecular and Quantum Acoustics 28: 39-46 (2007).
  • [27] Szmechta M., Zmarzły D., Boczar T., Lorenc M., Acoustic Spectra of Ultrasound Induced Cavitations in Insulating Oils. Acta Physica Polonica A 6A(114): A231-A238 (2008).
  • [28] Zmarzły D., Szmechta M., Investigation of acoustic emission generated by cavitation in insulating oils. Pomiary Automatyka Kontrola 54(2): 64-66 (2008).
  • [29] Szmechta M., Zmarzły D., Investigation of cavitation in insulating oils. Przegląd Elektrotechniczny 10: 40-43 (2008).
  • [30] Szmechta M., Zmarzły D., Boczar T., Measurement uncertainty of acoustic emission spectra In cavitating mineral insulating oil. Pomiary Automatyka Kontrola 2(57): 146-149 (2011).
  • [31] Szmechta M., Boczar T., Frącz P., Frequency and Time-Frequency Analysis of Acoustic Cavitation Noise in Insulating Oils. Acta Physica Polonica A, Optical and Acoustical Methods in Science and Technology 120(4): 744-747 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a45e6779-49f8-45c1-a0b9-45bd2760c6f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.