Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Proper water resources planning and management is based on reliable hydrological data. Missing rainfall and runoff observation data, in particular, can cause serious risks in the planning of hydraulics structures. Hydrological modeling process is quitely complex. Therefore, using alternative estimation techniques to forecast missing data is reasonable. In this study, two data-driven techniques such as Artificial Neural Networks (ANN) and Data Mining were investigated in terms of availability in hydrology works. Feed Forward Back Propagation (FFBPNN) and Generalized Regression Neural Networks (GRNN) methods were performed on rainfall-runoff modeling for ANN. Besides, Hydrological drought analysis were examined using data mining technique. The Seyhan Basin was preferred to carry out these techniques. It is thought that the application of different techniques in the same basin could make a great contribute to the present work. Consequently, it is seen that FFBPNN is the best model for ANN in terms of giving the highest R2 and lowest MSE values. Multilayer Perceptron (MLP) algorithm was used to predict the drought type according to limit values. This system has been applied to show the relationship between hydrological data and measure the prediction accuracy of the drought analysis. According to the obtained data mining results, MLP algorithm gives the best accuracy results as flow observation stations using SRI-3 month data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
29--51
Opis fizyczny
Bibliogr. 70 poz., tab., rys.
Twórcy
autor
- Adana Alparslan Türkeş Science and Technology University, Turkey
autor
- Adana Alparslan Türkeş Science and Technology University, Turkey
autor
- Adana Alparslan Türkeş Science and Technology University, Turkey
autor
- Adana Alparslan Türkeş Science and Technology University, Turkey
Bibliografia
- 1. Aggarwal, C.C. (2014). Data classification: algorithms and applications. CRC Press, 1-64.
- 2. Alp, M., & Cigizoglu, H. K. (2005). Modelling rainfall-runoff relation using different nartificial neural network methods. 2th National Water Engineering Symposium, 589- 598, Izmir.
- 3. Asadi, H., Shahedi, K., Jarihani, B., & Sidle, R. C. (2019). Rainfall-runoff modeling using hydrological connectivity index and artificial neural network approach. Water, 11(2), 1-20.
- 4. Bartholy, J., Pongracz, R., & Sabitz, J. (2013). Analysis of drought index trends for the Carpathian Basin using regional climate model simulations. Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 15.
- 5. Bayissa, Y., Maskey, S., Tadesse T., Van Andel S.J., Moges S., Van Griensven, A., & Solomatine, D. (2018). Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences Journal, MDPI, 8(3), 81-106.
- 6. Baykasoglu, A. (2005). Data mining and an application in cement industry. 7th Academic Informatics Congress, Gaziantep
- 7. Cigizoglu, H.K. (2005). Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems, 22(2), 71-84.
- 8. Caldas, C.H., Soibelman, L., & Han, J. (2002). Automated classification of construction project documents. Journal of Computing in Civil Engineering, 16(4), 234-243.
- 9. Cavus, Y., & Aksoy, H. (2019). Spatial drought characterization for Seyhan River Basin in the Mediterranean Region of Turkey. Water, MDPI, 11(7), 1331-1348.
- 10. Damle, C., & Yalcin, A. (2007). Flood prediction using time series data mining. Journal of Hydrology, 333(2), 305-316.
- 11. Dawidowicz, J., Czapczuk, A., & Piekarski, J. (2018). The application of artificial neural networks in the assessment of pressure losses in water pipes in the design of water distribution systems. Rocznik Ochorona Srodowiska, 20, 292-308.
- 12. Dawson, C.W., & Wilby, R. (1999). A comparison of artificial neural networks used for river flow forecasting. Hydrology and Earth System Sciences, 3, 529-540.
- 13. Electrical Work Surveying Administration (EWSA) (2008). Water flows annual book. General Directorate of Electrical Power Resources Survey and Development Administration, Hydraulic Study Management Department, Ankara, Turkey, 433-470.
- 14. Fujihara Y., Simonovic P.S., Topaloglu, F., Tanaka, K., & Tsugihiro, W. (2008). An inverse modelling approach to assess the impacts of climate change in the Seyhan River Basin, Turkey. Hydrological Sciences Journal, 53(6), 1121-1136.
- 15. Gumus, V., Soydan, N.G., Simsek, O., Akoz, M.S., & Kirkgoz, M.S. (2013). Comparison of different artificial neural networks for rainfall-runoff modeling. Cukurova University Engineering and Architecture Journal, 28(1), 37-50.
- 16. Gumus, V., & Kavsut, M.E. (2013). Estimation of Missing Monthly Flow Data of Zamanti River-Ergenusagi Station. Gazi University Journal Sci, Part C, 1(2), 81-91.
- 17. Gumus, V., & Algin, H.M. (2017). Meteorological and hydrological drought analysis of the Seyhan-Ceyhan River Basins, Turkey. Meteorological Applications Journal, 24(1), 62-73.
- 18. Gumus, V. (2017). Hydrological drought analysis of Asi River Basin with streamflow drought index. Gazi University Journal Sci, Part C, 5(1), 65-73.
- 19. Gumus, V., Yenigun, K., Toprak, Z.F., & Baci, N.O. (2018). Comparison of ANN, ANFIS and GEP methods in temperature-based evaporation estimation in Sanliurfa and Diyarbakir stations. Dicle University Faculty of Engineering Journal, 9(1), 553-562.
- 20. Guo, S., Liao, X., Liu, F., & Zhu, Y. (2015). Collaborative Computing: Networking, Applications, and Worksharing, 11th International Conference, CollaborateCom, Wuhan, China.
- 21. Hatami, P., Luo, L., Pei, L., Liu, X., Wilson, T., & Tan, P. N. (2018). Predicting US Drought Monitor Drought Categories with multiple land surface models and machine learning. In AGU Fall Meeting Abstracts.
- 22. Ikiel, C., & Ozyildirim, O. (2013). Rainfall forecasting using neural networks in Thrace. 2th International Balkan Annual Conference, At Tirane.
- 23. Kamble V. B., & Deshmukh S. N. (2019). Comparison between Accuracy and MSE, RMSE by using Proposed Method with Imputation Technique. Orient. J. Comp. Sci. and Technol, 10(4).
- 24. Kaur, A., & Sood, S. K. (2019). Cloud-Fog based framework for drought prediction and forecasting using Artificial Neural Network and Genetic Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 1-17.
- 25. Kaya, M., Keles, A.E., & Laptali Oral, E. (2013). Construction crew productivity prediction by using data mining methods. Proceedings of the 4th World Conference on Learning, Teaching and Educational Leadership, Procedia-Social and Behavioral Sciences, 141, 1249-1253.
- 26. Kaya Keles, M. (2017). An overview: The impact of data mining applications on various sectors. Technicki Glasnik, 11(3), 128-132.
- 27. Kaya Keles, M., & Keles, A.E. (2017). The place of data mining applications and heuristic optimization algorithms in construction management. Cukurova University Engineering and Architecture Journal, 32(1), 235-242.
- 28. Keles, A.E., & Kaya, M. (2014). The analysis of the factors affecting the productivity in the wall construction of the using apriori data mining method. Academic Informatics Congress, AIC Proceedings, 831-836.
- 29. Keles, A.E. (2016). The overview of data mining application on construction sector and interpretation of economic impact. Balkan Journal of Social Sciences, International Congress of Management Economy and Policy Special Issue, 55-61.
- 30. Keskin, M.E., Terzi, O., Taylan, E.D., & Kucukyaman, D. (2007). Scientific Research and Essays, 6(21), 4469-4477.
- 31. Keskin, M. E., Taylan, D., & Kucuksille, E. U. (2012). Data mining process for modeling hydrological time series. Hydrology Research, 44(1), 78-88.
- 32. Kisi, O. (2006). Generalized regression neural networks for evapotranspiration modeling. Hydrological Sciences Journal, 51(6), 1092-1105.
- 33. Konate, A.A., Pan, H., Khan, N., & Yang, J.H. (2015). Generalized regression and feed-forward back propagation neural networks in modelling porosity from geophysical well logs. Journal of Petroleum Exploration and Production Technology, 5(2), 157-166.
- 34. Kubiak-Wójcicka, K., & Bak, B. (2018). Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environmental Monitoring and Assessment, 190(11), 691.
- 35. Kumar, M.N., Murthy, C.S., Sesha, Sai., M.V.R., & Roy, P.S. (2009). On the use of standardized precipitation index (SPI) for drought intensity assessment. Meteorological Applications, 16, 381-389. doi: 10.1002/met.136.
- 36. Kumar, P.S., Praveen, T.V., & Prasad, M. (2016). Artificial neural network model for rainfall-runoff -A case study. International Journal of Hybrid Information Technology, 9(3), 263-272.
- 37. Kusiak, A., Wei, X., Verma, A.P., & Roz, E. (2013). Modeling and prediction of rainfall using radar reflectivity data: A data-mining approach. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2337-2342.
- 38. Liaoa, C.W., & Perng, Y.H. (2008). Data mining for occupational injuries in the Taiwan Construction Industry. Safety Science, 46(7), 1091-1102.
- 39. Lin, Y., Wen, H., & Liu S. (2018). Surface runoff response to climate change based on Artificial Neural Network (ANN) models: a case study with Zagunao catchment in Upper Minjiang River, Southwest China. Journal of Water and Climate Change, 10(1), 158-166.
- 40. Loyeh, N.S., & Jamnani, M.R. (2017). Comparison of different rainfall-runoff models performance: A case study of Liqvan catchment, Iran. European Water, 57, 315-322.
- 41. Machado, F., Mine, M., Kaviski, E., & Fill H. (2011). Monthly rainfall–runoff modelling using artificial neural networks. Hydrological Sciences Journal, 56(3), 349-361.
- 42. McKee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration of time scales. 8th Conference on Applied Climatology, American Meteorological Society, Anaheim CA, 179-186.
- 43. Mehdiyev, N., Enke, D., Fettke, P., & Loos, P. (2016). Evaluating forecasting methods by considering different accuracy measures. Procedia Computer Science, 95, 264-271.
- 44. Mishra, N., Soni, H. K., Sharma, S., & Upadhyay, A. K. (2018). Development and analysis of Artificial Neural Network models for rainfall prediction by using time-series data. International Journal of Intelligent Systems and Applications, 11(1), 16.
- 45. Myronidis, D., Ioannou, K., Fotakis, D., & Dörflinger, G. (2018). Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resources Management, 32, 1759-1776. doi: 10.1007/s11269-018-1902-z.
- 46. Nourani, V., Alami, M. T., & Aminfar, M. H. (2009). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3), 466-472.
- 47. Ozel, C., & Topsakal, A. (2014). Prediction of concrete compressive strength using data mining. Cumhuriyet University Faculty of Science, Science Journal (CSJ), 35(1), 43- 57. ISSN: 1300-1949.
- 48. Patel, A.B., & Joshi, G.S. (2017). Modeling of Rainfall-Runoff Correlations Using Artificial Neural Network-A Case Study of Dharoi Watershed of a Sabarmati River Basin, India. Civil Engineering Journal, 3(2), 78-87.
- 49. Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, 2(1), 37-63.
- 50. Sattari, M.T., Yurekli, K., & Unlukara, A. (2011). Drought estimation by using artificial neural networks approach in Karaman province. Journal of Agricultural Sciences, 4(1), 07-13.
- 51. Sattari, M.T., Mirabbasi, R., Sushab, R.S., & Abraham, J. (2018). Prediction of groundwater level in Ardebil Plain using support vector regression and M5 tree model. Groundwater, 56(4), 515-679. doi: 10.1111/gwat.12620.
- 52. Sattari, M.T., & Sureh, F.S. (2019). Drought prediction based on standardized precipitationevapotranspiration index by using M5 tree model. International Civil Engineering and Architecture Conference (ICEARC), at Karadeniz Technical University.
- 53. Sezen, C., Bezak, N., Bai, Y., & Sraj, M. (2019). Hydrological modelling of karst catchment using lumped conceptual and data mining models. Journal of Hydrology, 576, 98-110.
- 54. Shukla, S., & Wood, A.W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35, L02405. doi: 10.1029/2007 GL032487.
- 55. Stachowski, P. (2010). Assessment of meteorological droughts on the postmining areas in the Konin Region. Rocznik Ochrona Srodowiska, 12(1), 587-606.
- 56. Tabari, H., Nikbakht, J., & Hosseinzadehtalaei, P. (2013). Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI). Water ResourcesManagement, 27(1), 137-151.
- 57. Tayyab, M., Zhou, J., Zeng, X., & Ikram, R.M.A. (2016). Discharge forecasting by applying artificial neural networks at the Jinsha River Basin, China. European Scientific Journal, 12(9), 108-127. doi: 10.19044/esj.2016.v12n9p108.
- 58. Terzi, O (2012). Monthly rainfall estimation using data-mining process. Applied Computational Intelligence and Soft Computing, 20, 1-7. doi:10.1155/2012/ 698071.
- 59. The Ministry of Forestry & Water Affairs (MFWA) (2016). The project of the sectoral water allocation plan of the Seyhan Basin. General Directorate of Water Management, Ankara, Turkey.
- 60. Topcu E., & Seckin, N. (2016). Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index (SPI) and L-moments. Journal of Agricultural Sciences, 22(2), 196-215.
- 61. Trafalis, T. B., Richman, M. B., White, A., & Santosa, B. (2002). Data mining techniques for improved WSR-88D rainfall estimation. Computers and Industrial Engineering, 43(4), 775-786.
- 62. Tri, D.Q., Dat, T.T., & Truong D.D. (2019). Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology Journal, MDPI, 6(2), 49-68.
- 63. Tuncok, I.K. (2016). Drought planning and management: Experience in the Seyhan River Basin, Turkey. Water Policy, 18(2), 177-209.
- 64. Turan, M.E., & Yurdusev, M.A. (2009). River flow estimation from upstream flow records by artificial intelligence methods. Journal of Hydrology, 369(1), 71-77.
- 65. Turhan, E., Ozmen-Cagatay, H., & Cetin, A. (2016a). Modelling of rainfall-runoff relation with artificial neural network methods for Lower Seyhan Plain Sub-Basin and assessment in point of rainy-droughty terms. Cukurova University Engineering and Architecture Journal, 31(2), 227-241.
- 66. Turhan, E., & Ozmen-Cagatay, H. (2016b). Using of artificial neural network (ANN) for setting estimation model of missing flow data: Asi River-Demirköprü flow observation station (FOS). Cukurova University Engineering and Architecture Journal, 31(1), 93-106.
- 67. Turhan, E., Tantekin, A., & Ozdil, N.F.T. (2016c). The evaluation of hydrological drought and energy efficiency relation in the context of pumped storage hydroelectric power plants (PSHPPs) issue: The case of Adana. International Energy & Engineering Conference, At Gaziantep.
- 68. Wilmot, C.G., & Cheng, G. (2003). Estimating future highway construction costs. Journal Construction Engineering Management, 129(3), 272-279.
- 69. World Meteorological Organization (2012). Standardized precipitation index user guide. (WMO-No. 1090), Geneva, ISBN 978-92-63-11091-6.
- 70. Yurekli, K., Taghi Sattari, M., Anli, A. S., & Hinis, M. A. (2012). Seasonal and annual regional drought prediction by using data-mining approach. Atmósfera, 25(1), 85-105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a45a45b0-d913-487b-823b-5b08018cab80