PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initiators and motives for cooperation in humanitarian supply chains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The concept of humanitarian supply chain management is based on theoretical and methodological assumptions of the idea of cooperation between industry and trade. The overarching goal of humanitarian aid is to save or improve people's quality of life, which makes the problem of economic efficiency a secondary issue. The subjective structure of supply chains is also different, which determines the division of roles and motives in the process of cooperation between their participants. The publication aims to identify differences and controversies related to the transformation of the business concept of supply chain management into the cooperation of entities as part of humanitarian aid actions. Consequently, the second objective tends to identify factors of logistic cooperation among humanitarian organizations. Methods: To achieve both goals, the article was divided into a theoretical part on the idea of logistics cooperation in supply chains (methods: logical analysis and critical analysis of the subject literature) and a presentation of the results of an anonymous questionnaire survey diagnosing initiators and determinants of logistics cooperation in humanitarian supply chains in Poland (methods: questionnaire survey and descriptive statistics). Results: Humanitarian and business supply chains differ in terms of the purpose of functioning, the main entity that coordinates material, information, financial, human and reverse flows, stakeholders of the activities carried out, the location of the idea of cooperation in the supply chain management system and the impact of external conditions on efficiency of functioning. Regularities are diagnosed with respect to the initiators and factors of logistic cooperation in humanitarian supply chains: (1) the main initiators of logistic cooperation in humanitarian supply chains are humanitarian organizations who (2) underestimate the important factors and opportunities to achieve synergistic effects, there is a (3) requirement for greater involvement of national government institutions and international humanitarian organizations, and (4) the type of a humanitarian crisis has an impact on logistic cooperation. Conclusions: A random sample of 100 humanitarian NGOs based on a survey requires a more complete diagnosis of the initiators and the correctness of logistic cooperation in humanitarian supply chains from the perspective of other actors and beneficiaries of aid actions, as well as in the context of competition of cooperating entities, i.e., coopetition. Survey responses obtained should be confronted with an in-depth analysis of a case study of logistic cooperation in humanitarian supply chains to war refugees from Ukraine.
Czasopismo
Rocznik
Strony
263--274
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Wroclaw University of Economics and Business, Department of Strategic Management and Logistics, Wroclaw, Poland
  • Wroclaw University of Economics and Business, Department of Strategic Management and Logistics, Wroclaw, Poland
Bibliografia
  • 1. Addie, G.R., (1996), Slurry pipeline design for operation with centrifugal pumps, Proc. of the Thirteen Int. Pump Users Symp., Ed: Bailey, J.C., Chields, D.W.
  • 2. Bechteler, W., Vogel, G., (1982), Pressure Wave Velocity in Slurry Pipelines, Hydrotransport 8, Paper H2, BHRA Fluid Engineering.
  • 3. Bergant, A., Simpson, A.R., and Vitkoysky, J., (2001), Developments in unsteady pipe flow friction modeling, J. Hydraul. Res., 39(3), pp. 249-257.
  • 4. Brunone B., Golia, U.M., and Greco, M., (1995), Effects of Two-Dimensionality On Pipe Transient Modeling, ASCE J. Hydr. Eng., 121 (12), pp. 906-912.
  • 5. Brunone B., Karney W.B., Mecarelli M., Ferrante M., (2000), Velocity profiles and unsteady pipe friction in transient flow Journal of Water Resources Planning and Management, pp. 236-244.
  • 6. Burzyński K., Granatowicz J., Piwecki T., Szymkiewicz R., (1991) Metody numeryczne w hydrotechnice, Wyd. Politechniki Gdańskiej, Gdańsk, 1991.
  • 7. Chaudhry, M.H., (1987), Applied hydraulic transients, Van Nostrand Reinhold, New York.
  • 8. Covas, D., Stoianov, I., Mano, J.F., Ramos, H., Graham, N., and Maksimovic, C. (2005), The dynamic effect of the pipe-wall viscoelasticity in hydraulic transients. Part II - model development, calibration and verification, J. Hydraul. Res. 43(1), pp. 56-70.
  • 9. Cristoffanini C., Karkare M., Aceituno M., (2014), Transient Simulation of Long Distance Tailings and Concentrate Pipelines for Operation Training. Proceedings of SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA.
  • 10. Cui, H., Grace, J.R., (2007), Flow of pulp fibre suspension and slurries: A review, Int. J. Multiphase Flow, 33, 921-934.
  • 11. Derammelaere, R.H., Shou, G., (2002), Antamina’s Cooper and Zinc Concentrate Pipeline Incorporates Advanced Technologies, Proc. of Hydrotransport, 15 June 2001, pp. 5-8.
  • 12. Duan, H-F., Ghidaoui, M., Lee, P.J., and Tung, Y-K., (2010), Unsteady friction and visco-elasticity in pipe fluid transients, J. Hydraul. Res., 48(3), pp. 354-362. DOI: 10.1080/00221681003726247.
  • 13. Duan, Z., Yovanovich, M.M., and Muzychka, Y.S., (2012), Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts, ASME J. Fluids Eng., 134(6), pp. 061201(1-10). DOI: 10.1115/1.4006861.
  • 14. Fox, J.A., (1977), Hydraulic Analysis of Unsteady Flow in Pipe Networks, The MacMillian Press LTD, London and Basingstoke.
  • 15. Franke, P.G., and Seyler, F., (1984), Computational of unsteady pipe flow with respect to viscoelastic material properties, J. Hydraul. Res. 21(5), pp. 345-353
  • 16. Ghidaoui, M.S., Zhao, M., Mclnnis, D.A., and Axworthy, D.H., (2005), A Review of Water Hammer Theory and Practice, Appl. Mech. Rev., 58(1), pp. 49-76. DOI: 10. 1115/1.18p28050.
  • 17. Grygo D., Sobieski W., Lipiński S., (2014) Etapy pracy tarana wodnego, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, t. XXXI, z. 61(3/1/14), lipiec-wrzesień 2014, s.95-113.
  • 18. Han, W., Dong Z., Chai H., (1998), Water hammer in pipelines with hyperconcentrated slurry flows carrying solid partic’s, Science in China; 41(4) (Senes E), pp. 337-347.
  • 19. Hashemi, S.A., Sadighian, A., Shah, S.I.A., Sanders, R.S., (2014), Solid velocity and concentration fluctuations in highly concentrated liquid-solid (slurry) pipe flows, hit. J. Multiphase Flow, 66, 46-61. DOI: 10.101 6/j.ijmultiphaseflow.20 14.06.007.
  • 20. Ilin Jo. A. (1987): Rasczet nadzieżnosti podaczi wody, Stroizdat, Moscow.
  • 21. Imiełowski, S., Kodura, A., Glinicka, A., and Ajdukiewicz, C., (2016), Experimental study on mechanical properties of polyethylene HDPE on conditions of hydraulic impact simulation, Solid State Phenomena, Vol. 240, pp. 149-154, Trans Tech Publications, Switzerland, DOI: 10.4028/www.seientific.net/SSP.240.149.
  • 22. Janson L.E., (2010), Rury z tworzyw sztucznych do zaopatrzenia w wodę i odprowadzania ścieków. PSPRiKzTS, Toruń.
  • 23. Kaushal, DR., Thinglas, T., Tomita, Y., Kuchii, S., Tsukamoto, H., (2012) CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiphase Flow, 43, 85-100. DOI: 10.1016/j.ijmultiphaseflow.2012.03.005.
  • 24. Kaushal, DR., Tomita, Y., (2002) Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries, Int. J. Multiphase Flow, 28, 1697-1717.
  • 25. Kodura A., (2016), An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer, Archives of Hydro-Engineering and Environmental Mechanics, vol 23, pp. 35-45, DOI 10.15 1/heem-2016-0003.
  • 26. Kodura A., (21)18) Wpływ długości przewodu za zaworem kulowym na parametry uderzenia hydraulicznego w rurociągu z polietylenu o dużej gęstości, Ochrona Środowiska, nr 4, vol. 40, str. 15-20.
  • 27. Kodura A., Kubrak M., Stefanek P., Weinerowska-Bords K. (2018) An Experimental Investigation of Pressure Wave Celerity During the Transient Slurry Flow. In: Kalinowska M., Mrokowska M., Rowiński P. (eds) Free Surface Flows and Transport Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham DOlhttps://doi.org/10.1007/978-3-319-70914-7-16 Print ISBN978-3-3 19-70913-0 Online ISBN978-3-319-70914-7.
  • 28. Kodura A.: (2010) Influence of valve closure characteristic on pressure increase during water hammer run, Environmental Engineering III, CRC Press, Pages 463-472.
  • 29. Kodura, A., Stefanek, P., Weinerowska-Bords, K., (2017), An Experimental and Numerical Analysis of Water Hammer Phenomenon in Slurries ASME J. Fluids Eng., 139(12), pp. 121301-1-9. DOI: 10.1115/1.4037678.
  • 30. Lan, G., Jiang, J., Li, D. D., Yi, W. S., Zhao, Z., Nie, L. N., (2013), Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines, Proc. 6th International Conference on Pumps and Fans with Compressors and Wind Turbines, IOP Publishing JOP Conf. Series: Materials Science and Engineering 52, (2013)072008. DOI:10.1088/1757-899X/52/7/072008.
  • 31. Magistini G.B. (1824), Nuove Ricerche Sulla Teoria, e Sulle Practiche Applicazioni Della Percossa Idraulica, Bolonia.
  • 32. Mambretti S., (2014), Water Hammer Simulations, WIT Press, Southampton, ISBN 978-1-84564-680-6.
  • 33. Messa, G.V., Malin, M., Malavasi, S., (2014), Numerical prediction of fully-suspended slurry flow in horizontal pipes, Power Technology, 256, 61-70. DOI: 10.1016/j.powtec.2014.02.005.
  • 34. Miszta Kruk K. (2016) Wykorzystanie krótkotrwałych stanów przejściowych w sieciach wodociągowych do wykrywania wycieków wody, Ochrona Srodowiska, vol. 38, str. 39-43.
  • 35. Mitosek M. (2003) Wahania masy cieczy w przewodzie, OWPW Warszawa.
  • 36. Mitosek M. (2014) Mechanika płynów w Inżynierii i Ochronie Środowiska, OWPW, Warszawa.
  • 37. Mitosek M., Szymkiewicz R., (2012), Wave Damping and Smoothing in the Unsteady Pipe Flow, ASCE Journal of Hydraulic Engineering, Vol. 138, July 2012, pp. 619-628.
  • 38. Niełacny M.: (2005) Uderzenia hydrauliczne w systemach wodociągowych, WPP, Poznań.
  • 39. Niełacny M., Wiszniewska-Oraczewska I., (2000) Analiza wpływu typu oraz czasu zamykania zasuwy, zaworu na przyrost ciśnienia w przewodzie, Gaz Woda i Technika Sanitarna 8/2000, 316-321.
  • 40. Palarski J., (1982), Hydrotransport, WNT.
  • 41. Parmakian J., (1955), Water hammer analysis, Prentice-Hall Inc., New York.
  • 42. Paterson, A.J.C., (2011), The pipeline transport of high density slurries - a historical review of past mistakes, lessons learned and current technologies, Australian Centre of Geomechanics, Perth, http://wwwpatersoncooke.com/wp-content/uploads/PatersonHistorical-Review-Pipeline-Transport.pdf.
  • 43. Pezzinga J.: (2000) Evaluation of unsteady flow resistances by quasi-2D or 1D models. ASCE Journal of Hydraulics Engineering, vol. 126, 2000, s. 778-785.
  • 44. Pezzinga, G., and Scandura, P., (1995), Unsteady Flow in Installations with Polymeric Additional Pipe, ASCE J. of Hydraul. Eng., 121(11), pp. 802-811. DOI: 10.1061/(ASCE)0733-9429(1995)121:11(802).
  • 45. Pezzinga, G., Brunone, B., Camizzaro D., Ferrante, M., Maniconi, S., and Bemi, A., (2014), Two-Dimensional Features of Viscoelastic Models of Pipe Transients ASCE J. Hydr. Eng., 140(8).
  • 46. Ramos H., de Almeida B. A. (2002): Parametric Analysis of Water Hammer Effects in Small Hydro Schemes, Journal of Hydraulic Engineering, vol. 128, No 7, pp. 689-696.
  • 47. Ramos, H., Covas, D., Borga, A., and Loureiro, D., (2004), Surge damping analysis in pipe systems: modelling and experiments J. Hydraul. Res., 42(4), pp. 413-425.
  • 48. Samson, R., Biello, J.A., (2017), Longitudinal instability of slurry pipeline flow, Int. J. Multiphase Flow, 90, 57-63. DOI: 10.1016/j.ijmultiphaseflow.20 16.12.005.
  • 49. Sawicki J. M., Wichowski R. (2001) Uproszczony model lepko-relaksacyjnych strat energii w uderzeniu hydraulicznym Siódme Ogólnopolskie Sympozjum: "Zastosowanie Mechaniki Płynów w Inżynierii i Ochronie Środowiska". PŚ, KOWiTO, Gliwice-Wisła 2001. s. 10 136.
  • 50. Sharp B.B. (1974) Discussion of Water Hammer Charts for Various Types of Valves, Journal of Hydraulic Division, vol. 100, No 2, pp 323-326.
  • 51. Sharp B.B. (1981) Water Hammer: problems and solutions, Edward Arnold Publisher Ltd, London.
  • 52. Sharp B.B. (1969) Water Hammer Gate Characteristic, Water Power, vol. 21, pp. 352-354.
  • 53. Shook C.A., Hubbard L.T., (1973), An Experimental Study of Transient Slurry Flow, The Canadian Journal of Chemical Engineering, vol. 51, pp. 607-612.
  • 54. Shou, G., (1999), Solid-liquid Flow System Simulation and Validation, PSIG Annual Meeting.
  • 55. Soares A.K., Covas D.I.C., and Reis L.F.R., (2008), Analysis of PCV Pipe - Wall Viscoelasticity during Water Hammer ASCE J. Hydr. Eng., 134(9), pp. 61389-1394.
  • 56. Soares, A. K., Covas, D., and Reis, L.F., (2011), Leak detection by inverse transient analysis in an experimental PVC pipe system, J. Hydroinform., 13(2), pp. 153-166. DOI: 10.2166/hydro.2010.012.
  • 57. Streeter V. L., Wylie B. E., Bedford K. W. (1998) Fluid Mechanics, WCB McGraw-Hill, New York.
  • 58. Streeter, V. L., and Lai Ch., (1962), Water Hammer Analysis Including Fluid Friction ASCE J. Hydr. Div., 88, HY3, pp. 79-111.
  • 59. Szymkiewicz R. (2000), Matematyczne modelowanie przepływów w rzekach i kanałach, PWN, ISBN: 9788301131715.
  • 60. Szymkiewicz, R., and Mitosek, M., (2005) Analysis of unsteady pipe flow using the modified finite element method Commun. Numer. Methods Eng., 21(4), pp. 183-199.
  • 61. Szymkiewicz, R., and Mitosek, M., (2007) On improvement of the unsteady pipe flow equations Int. J. Numer. Method Fluid, 55(11), pp. 1039-1058.
  • 62. Szymkiewicz, R., and Mitosek, M., (2014) Alternative convolution approach to friction in unsteady pipe flow. ASME J. Fluids Eng., 136(1), pp. 011202-1-011202-9.
  • 63. Szymkiewicz, R., Mitosek, M., (2007) Numerical aspects of improvement of the unsteady pipe flow equations, Int. J. Numer. Meth. Fluids, 55, pp. 1039-1058.
  • 64. Szymkiewicz, R., Mitosek, M., (2014) Alternative Convolution Approach to Friction in Unsteady Pipe Flow J. Fluids. Eng., 136(1), pp.011202-(1-9).
  • 65. Tchórzewska-Cieślak B., Szpak D. (2015) Propozycja metody analizy i oceny bezpieczeństwa dostawy wody, Ochrona Środowiska, vol 35, str. 43-47.
  • 66. Thorley, A.R.D. (2004) Fluid transients in pipeline system: a guide to the control land suppression of fluid transients in liquids in closed conduits, ASME Press, New York.
  • 67. Thorley, A.R.D., Hwang, L.Y., 1979, Effects of Rapid Change in Flowrate of Solid-Liquid Mixtures, Proc. Of Hydrotransport 6th Conference, UK, pp. 229-242.
  • 68. Troskolański A. T., (1957) Hydromechanika techniczna, Tom III Pomiary wodne PWT, Warszawa.
  • 69. Vardy, A.E., and Hwang, K.A., (1991), A characteristic model of transient friction in pipes J. Hydraul. Res. 29(5), pp. 669-684.
  • 70. Vardy, A.E., and Brown, M.B., (2003) Transient turbulent friction in smooth pipe flow J. Sound Vib. 259(5), 1011-1036.
  • 71. Vardy, A.E., and Brown, MB., (2004) Transient turbulent friction in fully rough pipe flow. J. Sound Vib. 270, pp. 233-257.
  • 72. Vitkovsky J.P., Bergant A., Simpson A.R., and Lambert M.F., (2006) Systematic Evaluation on One - Dimensional Unsteady Friction Models in Simple Pipelines ASCE J. Hydr. Eng., 132(7), pp. 696-708.
  • 73. Walden H., (1986) Mechanika płynów. WPW, Warszawa.
  • 74. Wang, T., Jiang, J., Lan, G., (2014) Research on accumulator for water hammer protection of long-distance slurry transportation pipelines, Proc. of 6th Int. Symp. on Fluid Machinery and Fluid Engineering, 22 October 2014. DOI: 10.10491cp.2014.1256.
  • 75. Wasp, E. J., Kenney, J. P., Gandhi, R. L., (1977) Solid Liquid Flow Slurry Pipeline Transportation, Trans. Tech. Publications, Gulf Publ. Co.
  • 76. Weinerowska-Bords, K., (2006) Viscoelastic Model of Waterhammer in Single Pipeline - Problems and Questions, Archives of Hydro-Engineering and Environmental Mechanics, 53(4), pp. 331-351.
  • 77. Weinerowska-Bords, K., (2007) Accuracy end Parameter Estimation of Elastic and Viscoelastic Models of the Water Hammer, TASK QUATERLY, 11(4), pp. 383-395.
  • 78. Weinerowska-Bords, K., (2015) Alternative approach to convolution term of visco-elasticity in equations of unsteady pipe flow, J. Fluids Eng., 137(5), pp. 054501-(1-9). DOI: 10.1115/1.4029573.
  • 79. Wood D. J., Jones S. E. (1973) Water-hammer charts for various types of valves, Journal of Hydraulic Division, vol. 99, No 1, pp. 167-178.
  • 80. Wójcik W., Covar A. P. (1988) Analiza niezawodności działania pompowni ścieków w sieci kanalizacyjnej w Austin, USA, Ochrona Środowiska, vol. 3-4, str. 101-103.
  • 81. Wrzosek K.: (1999) Wpływ temperatury strumienia wody na parametry uderzenia hydraulicznego w przewodach z tworzyw sztucznych, rozprawa doktorska, Wydział Inżynierii Środowiska, Politechnika Warszawska.
  • 82. Wylie B. E., Streeter V. L., Suo L. (1993) Fluid Transients in Systems, Englewood Hills New Jersey, Prentice Hall.
  • 83. Zambrano, H., Sigalotti, L. D.G., Klapp, J., Pena-Polo, F., Bencomo, A., (2017) Heavy oil slurry transportation through horizontal pipelines: Experiments and CFD simulations, Int. J. Multiphase Flow, 91, 130-141. DOI: 10.1016/j.ijmultiphaseflow.2016.04.013.
  • 84. Zarzycki, Z., (2000) On weighting junction for wall stress during the unsteady turbulent pipe flow. Proceedings of the 8th International Conference on Pressure Surges, The Hague, BHR Group, pp. 529-543.
  • 85. Zielke, W., (1968) Frequency dependent friction in transient pipe flow, ASME J. Basic Eng., 90(1), pp. 109-115.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a459774f-8864-4571-8940-811835994b19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.