PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nuclear reaction applied to fluorine depth profiles in human dental tissues

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nuclear reaction 19F(p, αγ)16O is presented as a valid method to measure the fluorine content in the first superficial layers of teeth. The analysis is performed in-vitro in extracted teeth, both healthy, fluorotic and decayed. It is performed irradiating the tooth with an energetic proton beam and analyzing the emitted high energy alpha particles. The quantitative analysis is performed comparing results with that of a standard sample at a known concentration. The depth profile of fluorine has a maximum content in the first superficial layers. The average concentrations in healthy enamel are of the order of 2 mg/g; it is of about 10 mg/g in fluorotic teeth, and below 0.1 mg/g in decayed teeth. The concentration in the dentine is about 50% lower than in the enamel and the concentrations decrease going from incisors to premolar and to molar teeth. Many results and a literature comparison are presented and discussed.
Rocznik
Strony
193--199
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra -MIFT, Università di Messina, 98166, Italy
Bibliografia
  • [1] Buzalaf MAR, editor. Fluoride and the oral Environment. 2011. Basel, Switzerland: Karger; 2011.
  • [2] Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Food and Nutrition Board, Institute of Medicine. 1997.
  • [3] Anthony JW, Bideaux RA, Bladh KW, Nichols MC, editors. Handbook of Mineralogy.Chantilly, USA: Mineralogical Society of America. http://www.handbookofmineralogy.org/pdfs/fluorapatite.pdf
  • [4] Paiva MF, Delbem ACB, Danelon M, et al. Fluoride concentration and amount of dentifrice influence enamel demineralization in situ. J Dent. 2017;66:18-22.
  • [5] Martinez-Mier EA, Shone DB, Buckley CM, et al. Relationship between enamel fluorosis severity and fluoride content. J Dent. 2016;46:42-46.
  • [6] Campus G, Cagetti MG, Spano N, et al. Laboratory enamel fluoride uptake from fluoride products. Am J Dent. 2012;25(1):13-16.
  • [7] Rosin-Grget K, Peros K, Sutej I, Basic K. The cariostatic mechanisms of fluoride. Acta Med Acad. 2013;42(2):179-188.
  • [8] Torrisi L, Rapisarda E. Fluorine concentrations in the enamel and dentin of healthy, carious and fluorotic teeth in a nuclear reaction study. Minerva Stomatologica. 1984;33(1):17-21.
  • [9] Fejerskov O, Kidd E, editors. Dental Caries – The Disease and its Clinical Management. Munksgaard, Oxford: Blackwell; 2008.
  • [10] Richards A, Coote GE, Pearce EI. Proton Probe and Acid Etching for Determining Fluoride Profiles in Porous Porcine Enamel. J Dent Res. 1994;73(3):644-651.
  • [11] Sastri CS, Iyengar V, Blondiaux G, et al. Fluorine determination in human and animal bones by particle-induced gamma-ray emission. Fresenius J Anal Chem. 2001;370(7):924-929.
  • [12] Rapisarda E, Sortino F, Torrisi L. Physical analysis of the structure of dental enamel using the photon induced X-ray emission method. Minerva Stomatologica. 1982;31(4):415-422.
  • [13] Cabanelas P, Cruz J, Fonseca M, et al. Cross Sections for proton induced high energy gamma-ray emission (PIGE) in reaction 19F(p,αγ)16O at incident proton energies between 1.5 and 4 MeV. Nucl Instrum Meth Phys Res B. 2016;381:110-113.
  • [14] La Cognata M, Palmerini S, Spitaleri C, et al. Updated THM Astrophysical Factor of the 19F(p, α)16O reaction and influence of new direct data at astrophysical energies. Astrophys J. 2015;805:128-134.
  • [15] Torrisi L, Sheng KL, Rapisarda E, Foti G. Depth distribution of fluorine in enamel teeth by 19F(p, α0)16O reaction. Il Nuovo Cimento D. 1985;5(2):164-174.
  • [16] Tesmer JR, Nastasi M, editors. Handbook of Modern Ion Beam materials analysis. Pittsburg, Pennsylvania: Materials Research Society. 1995.
  • [17] Ziegler J. SRIM, The stopping and range of ions in the matter. http://www.srim.org/
  • [18] Rapisarda E, Torrisi L, Scala F. Difference in concentration of fluoride in the buccal and lingual enamel of teeth with or without fluorosis, analyzed by nuclear reaction. Stomatologia Mediterranea. 1984;4(3):387-395.
  • [19] Torrisi L, Foti G, Campisano SU. Fluorine microanalysis in teeth. Clinical Materials. 1990;5(2-4):139-145.
  • [20] Salah H, Arab N. Application of PIGE to Determine Fluorine Concentration in Human Teeth: Contribution to Fluorosis Study. JNucl Radiochem Sci. 2007;8(1):31-34.
  • [21] Carvalho ML, Karydas A, Casaca C, et al. Fluorine determination in human healthy and carious teeth using the PIGE technique. Nucl Instrum Meth Phys Res B. 2001;179(4):561-567.
  • [22] Majni G, Torrisi L Molinari G. Fluorine absorption in dental enamel assisted by UV irradiation. Il Nuovo Cimento D. 1988;10(2):137-143.
  • [23] Torrisi L. Fluoride concentration in ancient teeth measured by nuclear reaction. Clinical Materials. 1994;17(3):151-154.
  • [24] Ekstrand J, Fejerskov O, Silverstone LM, editors. Fluoride in Dentistry. Copenhagen; 1988.
  • [25] Buzalaf MAR, Levy SM. Fluoride Intake of Children: Considerations for Dental Caries and Dental Fluorosis. In: Buzalaf MAR, editor. Fluoride and the oral Environment. 2011. Basel, Switzerland: Karger; 2011. pp. 1-19.
  • [26] Vernole B, Palano D, Molinari G, et al. In vitro enamel fluoridation using an ultraviolet laser. Bull Group Int Rech Sci Stomatol Odontol. 1989;32(1):47-52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4558a36-5b9b-46b0-9c01-f8cbc06f9d95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.