PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing laser cutting quality of stainless steel 201 by controlling dross formation and surface roughness using multi-factor experimental design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A better process and products are thought to require characterization, evaluation of effects, and understanding of the damage extension caused by the Laser Cutting (LC) process on the surface integrity of the cut workpieces, given its many benefits and applications in the industry. In this work, 32-run CCD was used under Response Surface Methodology (RSM) to examine the laser cutting of stainless steel 201 (SST 201) utilizing a 32-run experimental design. Laser power (Pu), cutting speed (V), frequency (F), focal position (FP), and gas pressure (P) are chosen as parameters for the input process, where the surface roughness and dross formation are taken into account as response variables in this process. Each parameter's relevance and impact was evaluated by a thorough statistical analysis that included Analysis of Variance (ANOVA), counters plots, main effect plots, and residual plots. The ANOVA results for surface roughness (Ra) and dross generated area (DA) are closely related since both are influenced by process parameters. While improving assist gas pressure enhances the surface quality and lowers the accumulation, increasing the laser power and cutting speed decreases both roughness and dross.
Twórcy
  • Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
  • Department of Aeronautical Technical Engineering, College of Technical Engineering, Al-Farahidi University, Iraq
  • Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Zeilmann R.P. and Conrado R.D. Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser. Procedia CIRP, 2022, 108, C, 367–371. https://doi.org/10.1016/j.procir.2022.03.060.
  • 2. Al-Thamir M., Algodi S.J., Al-Hamdani K.S., Abed A.A. The effect of nominal powder thickness on solidification behavior of atypical multilayer WC–Co components fabricated by laser-powder bed fusion. Springer Nature, 2024, 9, 237–245. https://doi.org/10.1007/s40964-023-00445-4.
  • 3. Vora J. et al. Experimental investigations and pareto optimization of fiber laser cutting process of Ti6AL4V. Metals (Basel), 2021, 11(9), 1–27. https://doi.org/10.3390/met11091461.
  • 4. Teixidor D., Ciurana J., and Rodriguez C.A. Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets. Int. J. Adv. Manuf. Technol., 2014, 71(9–12), 1611–1621. https://doi.org/10.1007/s00170-013-5599-0.
  • 5. Amaral I., Silva F.J.G., Pinto G.F.L., Campilho R.D.S.G., and Gouveia R.M. Improving the cut surface quality by optimizing parameters in the fibre laser cutting process. Procedia Manuf., 2019, 38, 1111–1120. https://doi.org/10.1016/j.promfg.2020.01.199.
  • 6. Sharifi M. and Akbari M. Experimental investigation of the effect of process parameters on cutting region temperature and cutting edge quality in laser cutting of AL6061T6 alloy. Optik (Stuttg), 2019, 184, 457–463. https://doi.org/10.1016/j.ijleo.2019.04.105.
  • 7. Bedan A.S., Shabeeb A.H., and Hussein E.A. Improve single point incremental forming process performance using primary stretching forming process. Advance in Science and Technology Research Journal, 2023, 17(5), 260–268. https://doi.org/10.12913/22998624/172907.
  • 8. Li T. et al. Experimental study on laser cutting process of simulated fast reactor fuel rods. Sci. Rep., 2024, 14(1), 1–12. https://doi.org/10.1038/s41598-024-81161-z.
  • 9. Alsaadawy M., Dewidar M., Said A., Maher I., and Shehabeldeen T.A. Investigation of the effect of laser cutting parameters on surface and kerf quality of thick Ti–6Al–4V alloy sheets. Arab. J. Sci. Eng., 2024. https://doi.org/10.1007/s13369-024-09083-6.
  • 10. García-López E., Siller H., Vazquez-Lepe E., Ramirez-Galindo J.G., and Rodriguez C.A. Minimizing surface roughness and back wall dross for fiber laser micro-cutting on AISI 316L tubes using response surface methodology. Mater. Res. Express, 2024, 11(2), 0–13. https://doi.org/10.1088/2053-1591/ad215c.
  • 11. Jasim A.N., Mohammed A., Mustafa A.M., Sayyid F.F., Aljibori H.S., Al-Azzawi W.K., Al-Amiery A.A., and Yousif E.A. Corrosion inhibition of mild steel in HCl solution by 2-acetylpyrazine: Weight loss and DFT studies on immersion time and temperature effects. Progress in Color, Colorants and Coatings, 2024, 17(4), 333–350. https://doi.org/10.30509/PCCC.2024.167231.1261.
  • 12. Genna S., Menna E., Rubino G., and Tagliaferri V. Experimental investigation of industrial laser cutting: The effect of the material selection and the process parameters on the kerf quality. Appl. Sci., 2020, 10(14). https://doi.org/10.3390/app10144956.
  • 13. Cavusoglu O. The 3D surface morphological investigation of laser cutting process of 2024-T3 aluminum alloy sheet. Optik (Stuttg), 2021, 238, 166739. https://doi.org/10.1016/j.ijleo.2021.166739.
  • 14. Pacher M., Franceschetti L., Strada S.C., Tanelli M., Savaresi S.M., and Previtali B. Real-time continuous estimation of dross attachment in the laser cutting process based on process emission images. J. Laser Appl., 2020, 32(4). https://doi.org/10.2351/7.0000145.
  • 15. Singh A.K., Bal K.S., Pal A.R., Dey D., and Roy Choudhury A. A novel method to reduce dross in laser beam cutting of Ti–6Al–4V alloy sheet. J. Manuf. Process., 2021, 64, 95–112. https://doi.org/10.1016/j.jmapro.2021.01.020.
  • 16. Al-Ghuraibawi A., Abed A.H., Mansor K.K. Numerical simulation of forming a 3D shape by a multi-point die. Salud, Ciencia y Tecnologia - Serie de Conferencias, 2024, 36. https://doi.org/10.56294/sctconf2024848.
  • 17. Ghazi S.K., Salloom M.Y., Bedan A.S. Experimental evaluation of a system to control the incremental forming of aluminum alloy type 1050. Engineering, Technology and Applied Science Research, 2024, 14(5), 16943–16949. https://doi.org/10.48084/etasr.8387.
  • 18. Patidar D. and Rana R.S. The effect of CO2 laser cutting parameter on mechanical & microstructural characteristics of high strength steel – a review. Mater. Today Proc., 2018, 5(9), 17753–17762. https://doi.org/10.1016/j.matpr.2018.06.099.
  • 19. Khalida K., Mansor E.A.H.F.A., Bedan A.S., Mansor S.A.H.A. A statistical investigation and prediction of the effect of FDM variables on flexural stress of PLA prints. 2024, 31(3), 10–17.
  • 20. Al-Ghuraibawi A., Abed A.H., Mansor K.K. Simulation and experimental approach for metal forming with a multi-point die. Salud, Ciencia y Tecnologia - Serie de Conferencias, 2024, 36. https://doi.org/10.56294/sctconf2024855.
  • 21. Abtan N.S., Sultan A.E., Sayyid F.F., Alamiery A.A., Jaaz A.H., Gaaz T.S., Ahmed S.M., Mustafa A.M., Ali D.A., and Hanoon M.M. Enhancing corrosion resistance of mild steel in hydrochloric acid solution using 4-phenyl-1-(phenylsulfonyl)-3-thiosemicarbazide: A comprehensive study. Int. J. Corros. Scale Inhib., 2024, 13(1), 435–459. https://doi.org/10.17675/2305-6894-2024-13-1-22.
  • 22. Chaudhari R., Vora J., de Lacalle L.N.L., Khanna S., Patel V.K., and Ayesta I. Parametric optimization and effect of nano-graphene mixed dielectric fluid on performance of wire electrical discharge machining process of Ni55.8Ti shape memory alloy. Materials, 2021, 14(10). https://doi.org/10.3390/ma14102533.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a453acf4-02c2-4ff6-b6fd-f2b85945b5a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.