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The paper presents a method of preparing data, which can be used to simplify the 
procedure of formulating local stiffness matrices in the finite element method (the part of 
preparing this data is hence referred to as the pre-assembly). For the presentation of the 
methodology non-curvilinear triangular elements have been chosen, where it has been 
taken into account that any order can be selected for the elements. The paper presents a 
mathematical basis of how the auxiliary data is prepared. The appropriate relations to the 
final FEM equations are also given. 
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1. INTRODUCTION 
 

When solving an electromagnetic field problem with the use of the finite 
element method, certain steps need to be performed. These can be generally 
divided into (in order of their execution): 
 definition of the problem geometry and environment parameters, 
 meshing, 
 assembly, 
 analysis (i.e. computations of the field), 
 postprocessing. 

The study that is presented concerns the assembly part, where local stiffness 
matrices of elements are obtained, then the global stiffness matrix is built 
according to them and a defined local to global enumeration is designated. The 
local stiffness matrices are built with a dependence on: 
 the element type, 
 the element order, 
 the base element shape, 
 the element placement in the global coordinate system. 
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The matter discussed in this paper is a possibility of preparing a database that 
would store the dependency of applied types of elements only on the coordinates of 
the element’s essential vertices (i.e. the nodes that are responsible for the 
geometrical approximation). This could reduce the computational weight of the 
finite element method in the assembly part. This pre-assembly will also allow to 
skip most of the assembly part by applying the derived dependencies along with 
prepared coefficient values. 
 The presented study is planned to be presented in a series of articles, where the 
current one only concerns triangular non-curvilinear elements of an arbitrary order (an 
analysis of this type for curvilinear elements will be discussed in a future paper). 
 

2. TRANSIENT MAGNETIC FIELD EQUATIONS 
 
 The current study concerns only 2D problems. In this case the transient magnetic 
field is described by the following differential equation for the magnetic vector 
potential component (assuming a linear medium): 

 .1
ext

2 J
t
AA 



 



        (1) 

From the above the following weak formulation can be derived [1, 2]: 
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where w is the test function,  is the considered domain, Jext is an externally enforced 

current density. 
n
A

  is the derivative across the direction normal to the boundary 

  that covers the region . 
 When applying the finite element formulation, in order to obtain the equations and 
their dependencies on the appropriate degrees of freedom then the following three basic 
components must be designated for each element of the equation (2): 
 concerning the second component: 
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 where N denotes shape functions of the element and _' is the region of the element, 
 concerning the third and fourth component: 
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 additionally if the element is in contact with the boundary then the following 
component is also important: 
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where in the local coordinate system (, η) it is assumed that η = 0 is the element face that 

represents the boundary fragment. If the normal derivative 
n
A

  is nonhomogeneous on 

the boundary then the following equation can be introduced: 
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Hence it can be derived that: 
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where m = p – 1 with p being the order of the element. 

 In total the triangular element contains m' degrees of freedom (
2

'
2 mmm 

 ) hence, 

in conclusion, when applying the finite element method one obtains m' local equations 
for each element (where each equation has a unique index a) of the following form 
subject to (3), (4) and (7): 
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where a is equal to 1 only if the degree of freedom with the index a is placed on the 
problem boundary (otherwise it equals 0).  is the length of the boundary fragment that is 
covered by the considered element. 
 

3. FORMULATION OF AUXILIARY EQUATIONS 
 
 The section provides information on the formulae to obtain the terms ba ,  and 

.,ba  Subject to the relation between the local and global coordinates in a 2D space [1, 
2] the following equation can be obtained: 
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where J is the Jacobian matrix of transformation between the local and global 
coordinates: 
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 Since the presented study deals so far with non-curvilinear triangular elements then 
the global coordinates x and y can be respectively expressed by: 

,)1( 321  xxxx          (11) 
and: 

.)1( 321  yyyy         (12) 
 The coordinates (x1, y1), (x2, y2) and (x3, y3) represent the element’s essential vertices 
(triangle corners). The Jacobian matrix determinant is hence: 
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 Due to det_J being a constant value – its reciprocal can be taken into account as a 
separate multiplier independent of the integration. When introducing the notation for the 
geometric basis functions: 
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equation (9) takes the form: 
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Next, an auxiliary notation is introduced: 
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which allows to write: 
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The above equation in turn can be presented in the form:  
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Another auxiliary notation is introduced for: 
















.

,

'
,,,,

'
,,

,,, klZZZZ

klZZ

lbkakbla

lbla

klba



        (19) 

which allows to write the final form: 
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Subject to the previously derived dependencies it can be observed that: 
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hence it is only necessary to obtain the terms klba ,,,  for b__a and k__l so that the 
final form of a 4D matrix  can be presented as a triangularly filled structure as 
depicted in Fig. 1. 
 

 
 

Fig. 1. The a,b,l,k terms depicted in the form of a 4D structure 
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 In order to obtain the terms ba,  much simpler formulae need to be used in 
comparison to the ones for ba , . Since det_J is a constant value then it can be again 
placed outside of the integral. The auxiliary term is introduced: 

  ,dd
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so that one can use the formula: 
.det ,, baba J             (23) 

 A special feature of the values expressed by ,,cad  ba ,  and klba ,,,  is that they 
are independent of the triangle’s essential vertices (i.e. (xi, yi), i = 1, 2, 3) so that 
they can be prepared in a pre-assembly and placed in auxiliary data sheets.  
 

4. CONCLUSIONS 
 
 The effect of the work so far is that if one wants to obtain a local stiffness 
matrix of a non-curvilinear triangular element then only the triangle corner 
coordinates need to be known while the remaining data is given in auxiliary data 
sheets obtained through the presented method. The final values of the stiffness 
matrix entries can be obtained through the formula (8) while initially the equations 
(6), (20) and (23) are used, which apply the values of ,,cad  klba ,,,  and ba ,  
respectively. Exemplary data sheets for m = 2 and m = 3 (which stand for elements 
of order 1 and 2) are given in Figure 2 and 3. 
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Fig. 2. Auxiliary data sheet for the computation of local stiffness matrices that result from applying 

non-curvilinear triangular elements of the first order 
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m = 3 
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Fig. 3. Auxiliary data sheet for the computation of local stiffness matrices that result from applying 

non-curvilinear triangular elements of the second order 
 

 The above data sheets have been obtained through the application of an original 
program written by the authors in C#. The program utilizes classes that allow for 
multivariate symbolic polynomial computations. This implementation will be 
discussed in a future paper. 
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