PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chiral pyrrolidinium salts derived from menthol as precursor – synthesis and properties

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Six new chiral pyrolidinium salts with chiral substituent at quaternary nitrogen atom were synthesized with high overall yields from (-)-menthol as cheap chiral precursor and were identified by NMR and HRMS spectroscopy. It was shown that anion type had the effect on chemical shift of protons adjacent to quaternary nitrogen atom and physical properties of these salts. Salts with NTf2  or NPf2  were in a liquid state at room temperature and characterized with the highest thermal stability among others. Furthermore, chiral ionic liquid with NTf2  anion was used as solvent in Diels-Alder reaction and gave higher yield and stereoselectivity than in ionic liquids with achiral cations. Synthesized chiral salts have the potential as chiral solvents in synthesis and auxiliaries in analytical methods to improve chiral recognition.
Rocznik
Strony
92--98
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Gadenne, B., Hesemann, P. & Moreau, J.J.E. (2004). Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde. Tetrahedron Lett. 45, 8157–8160. DOI: 10.1016/j.tetlet.2004.09.038.
  • 2. Singh, A. & Chopra, H.K. (2016). New benzimidazolium-based chiral ionic liquids: synthesis and application in enantioselective sodium borohydride reductions in water. Tetrahedron: Asymmetry 27, 448–453. DOI:10.1016/j.tetasy.2016.04.004.
  • 3. Vasiloiu, M., Leder, S., Gaertner, P., Mereiter, K. & Bica, K. (2013). Coordinating chiral ionic liquids. Org. Biomol. Chem. 11, 8092. DOI: 10.1039/c3ob41635f.
  • 4. Bica, K., Gmeiner, G., Reichel, C., Lendl, B. & Gaertner, P. (2007). Microwave-Assisted Synthesis of Camphor-Derived Chiral Imidazolium Ionic Liquids and Their Application in Diastereoselective Diels–Alder Reaction. Synthesis 9, 1333–1338. DOI: 10.1055/s-2007-966018.
  • 5. Baudequin, C., Bregeon, D., Levillain, J., Guillen, F., Plaquevent, J.C. & Gaumont, A.C. (2005). Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron: Asymmetry 16, 3921–3945. DOI: 10.1016/j.tetasy.2005.10.026.
  • 6. Kapnissi-Christodoulou, C.P., Stavrou, I.J. & Mavroudi, M.C. (2014). Chiral ionic liquids in chromatographic and electrophoretic separations. J. Chromatogr. A 1363, 2–10. DOI: 10.1016/j.chroma.2014.05.059.
  • 7. Zhang, Y., Du, S., Feng, Z., Du, Y. & Yan, Z. (2016). Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis. Anal. Bioanal. Chem. 408, 2543–2555. DOI: 10.1007/s00216-016-9356-8.
  • 8. Kartsova, L.A., Bessonova, E.A. & Kolobova, E.A. (2016). Ionic Liquids as Modifiers of Chromatographic and Electrophoretic Systems. J. Anal. Chem. 71(2), 141–152. DOI: 10.1134/S1061934816020064.
  • 9. Ishida, Y., Sasaki, D., Miyauchi, H. & Saigo, K. (2006). Synthesis and properties of a diastereopure ionic liquid with planar chirality. Tetrahedron Lett. 47, 7973–7976. DOI: 10.1016/j.tetlet.2006.08.101.
  • 10. Winkel, A. & Wilhelm, R. (2010). New Chiral Ionic Liquids Based on Enantiopure Sulfate and Sulfonate Anions for Chiral Recognition. Eur. J. Org. Chem. 5817–5824. DOI: 10.1002/ejoc.201000801.
  • 11. Santamarta, F., Vilas, M., Tojo, E. & Fall, Y. (2016). Synthesis and properties of novel chiral imidazolium-based ionic liquids derived from carvone. RSC Adv. 6, 31177. DOI: 10.1039/c6ra00654j.
  • 12. Bwambok, D.K., Marwani, H.M., Fernand, V.E., Fakayode, S.O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I.M. (2008). Synthesis and Characterization of Novel Chiral Ionic Liquids and Investigation of their Enantiomeric Recognition Properties. Chirality 20(2), 151–158. DOI: 10.1002/chir.20517.
  • 13. Kataev, V.E., Strobykina, I.Yu. & Zakharova, L.Ya. (2014). Quaternary ammonium derivatives of natural terpenoids. Synthesis and properties. Russ. Chem. Bull. Int. Ed. 63(9), 1884—1900. DOI: 10.1007/s11172-014-0680-x.
  • 14. Nageshwar, D., Muralimahan, D.R., Acharyulu, P.V.R. (2009). Terpenes to Ionic Liquids: Synthesis and Characterization of Citronellal-Based Chiral Ionic Liquids. Synthetic Commun. 39, 3357–3368. DOI: 10.1080/00397910902768226.
  • 15. Wang, Y. (2003). Synthesis and application of novel chiral ionic liquids derived from alpha-pinene. M.Sc. thesis. Newark, NJ: New Jersey Institute of Technology, Department Chemistry and Environmental Science.
  • 16. Nobuoka, K., Kitaoka, S., Kunimitsu, K., Iio, M., Harran, T., Wakisaka, A. & Ishikawa, Y. (2005). Camphor Ionic Liquid: Correlation between Stereoselectivity and Cation-Anion Interaction. J. Org. Chem. 70, 10106–10108. DOI: 10.1021/jo051669x.
  • 17. Santamarta, F., Vilas, M., Tojo, E. & Fall, Y. (2016). Synthesis and properties of novel chiral imidazoliumbased ionic liquids derived from carvone. RSC Adv. 6, 31177–31180. DOI: 10.1039/c6ra00654j.
  • 18. Matos, R.A.F. & Andrade, C.K.Z. (2008). Synthesis of new chiral ionic liquids based on (-)-menthol and (-)-borneol. Tetrahedron Lett. 49, 1652–1655. DOI: 10.1016/j.tetlet.2008.01.011.
  • 19. Pernak, J. & Feder-Kubis, J. (2005). Synthesis and Properties of Chiral Ammonium-Based Ionic Liquids. Chem. Eur. J. 11, 4441–4449. DOI: 10.1002/chem.200500026.
  • 20. Feder-Kubis, J. & Pernak, J. (2006). Chiral pyridinium-based ionic liquids containing the (1R,2S,5R) -( )-menthyl group. Tetrahedron: Asymmetry 17, 1728–1737. DOI: 10.1016/j.tetasy.2006.06.014.
  • 21. Feder-Kubis, J., Kubicki, M. & Pernak, J. (2010). 3-Alkoxymethyl-1-(1R,2S,5R)-( )-menthoxymethylimidazolium salts-based chiral ionic liquids. Tetrahedron: Asymmetry 21, 2709–2718. DOI: 10.1016/j.tetasy.2010.10.029.
  • 22. Hardcare, Ch., Holbrey, J.D., Nieuwenhuyzen, M., Youngs, T.G.A. (2007). Structure and Solvation in Ionic Liquids. Acc. Chem. Res.40(11), 1146–1155. DOI: 10.1021/ar700068x.
  • 23. Bonanni, M., Soldaini, G., Faggi, C., Goti, A. & Cardona, F. (2009). Novel L-Tartaric Acid Derived Pyrrolidinium Cations for the Synthesis of Chiral Ionic Liquids. Synlett 5, 0747–0750. DOI: 10.1055/s-0028-1087950.
  • 24. Shi M., Kazuta K., Satoh Y., Masaki Y. (1994). Synthesis and Investigation of C2-Symmetric Optically Active Pyrrolidinium Salts as Chiral Phase-Transfer Catalysts. Chem. Pharm. Bull. 42(12), 2625–2628. DOI: 10.1248/cpb.42.2625.
  • 25. Liang, Y., Ling, D., Hu, Z. & Cao, D. (2015). Synthesis and Physicochemical Characterization of Chiral Pyrrolidinium-Based Surfactants. J. Disper. Sci. Technol. 36, 831–837. DOI: 10.1080/01932691.2014.926252.
  • 26. Nobuoka, K., Kitaoka, S., Kojima, T., Kawano, Y., Hirano, K., Tange, M., Obata, S., Yamamoto, Y., Harran, T. & Ishikawa, Y. (2014). Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction. Org.Chem. Inter.1–9. DOI: 10.1155/2014/836126.
  • 27. Raju, C.M.H., Dubey, P.K. & Acharyulu, P.V.R. (2008). Synthesis and Characterization of the First Pyrrolidine-Based Chiral Ionic Liquids. Synt. Commun. 38, 1439–1447. DOI: 10.1080/00397910801916140.
  • 28. Kitazume, T. (2001). Optically Active Ionic Liquids. U.S. Patent No. 20010031875A1. United States Patent Application.
  • 29. Fisher, T., Sethi, A., Welton, T. & Woolf, J. (1999). Diels-Alder Reaction in Room-Temperature Ionic Liquids. Tetrahedron Lett. 40, 793–796. DOI: 10.1016/S0040-4039(98)02415-0.
  • 30. Aggarwal, A., Lancaster, N.L., Sethi, A.R. & Welton, T. (2002). The role of hydrogen binding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chem. 4, 517–520. DOI: 10.1039/b206472c.
  • 31. Janus E., Goc-Maciejewska, I. Łożyński, M. & Pernak, J. (2006). Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett. 47, 4079–4083. DOI: 10.1016/j.tetlet.2006.03.172.
  • 32. Stefaniak, W., Janus, E. & Milchert, E. (2011). Diels-Alder reaction of cyclopentadiene and alkyl acrylates in the presence of pyrrolidinium ionic liquids with various anions. Catal. Lett. 141, 742–747. DOI: 10.1007/s10562-011-0558-6.
  • 33. Janus, E., Bittner, B. (2010). Triethylsulfonium bistriflimide as the reaction medium in catalyzed and uncatalyzed cycloaddition [4+2]. Catal. Lett. 134, 147–154. DOI: 10.1007/s10562-009-0211-9.
  • 34. Janus, E. & Stefaniak, W. (2008). The Diels-Alder reaction in phosphonium ionic liquid catalysed by metal chlorides, triflates and triflimides. Catal. Lett. 124, 105–110. DOI: 10.1007/s10562-008-9431-7.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4500666-10a2-457e-9e90-f2453ddc7693
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.