PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of chosen GRACE related gravity models based on the GOCE satellite precise science orbit

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eight selected geopotential models obtained through the International Center for Global Earth Models were used in the dynamic orbit determination process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For the estimation of various GOCE orbital arc variants, the following gravity models were taken into account: HUST-GRACE2016S, ITU_GRACE16, ITSG-GRACE2014S, ITSG-GRACE2014K, TONGJI-GRACE01, EIGEN-51C, EIGEN5S, EGM2008. The ofcial kinematic and reduced-dynamic precise science orbit (PSO) of the GOCE satellite received via the European Space Agency was adopted as the reference orbit. Cartesian coordinates of the GOCE satellite in this orbit were treated as pseudo-observations in the estimation process using the classical least-squares method. The estimated orbital arcs were ftted to the corresponding arcs of the reference orbit. This allowed the values of 3D root-mean-square (RMS) of the distance between the estimated and reference arcs to be computed. The averages for these 3D RMS values, computed for ten and ffty orbital arcs, made it possible to compare the orbital performance of selected gravity models. Additionally, the ft to both types of the GOCE PSO, i.e., the kinematic orbit and the reduced-dynamic orbit made it possible to compare their quality. Investigation of the gravity model performance was also the opportunity to describe the efectiveness of dynamic orbit determination solutions, depending on the estimated arc lengths, type of reference orbit and the use (or not) of the background models.
Czasopismo
Rocznik
Strony
1265--1275
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Institute of Geodesy, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
Bibliografia
  • 1. Baur O, Bock H, Höck E, Jäggi A, Krauss S, Mayer-Gürr T, Reubelt T, Siemes C, Zehentner N (2014) Comparison of GOCE-GPS gravity fields derived by different approaches. J Geodesy 88(10):959–973. https://doi.org/10.1007/s00190-014-0736-6
  • 2. Bezděk A, Sebera J, Klokočník J, Kostelecký J (2014) Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites. Adv Space Res 53(5):412–429. https://doi.org/10.1016/j.asr.2013.11.031
  • 3. Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geodesy 85(11):807–818. https://doi.org/10.1007/s00190-011-0484-9
  • 4. Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geodesy 88(11):1047–1060. https://doi.org/10.1007/s00190-014-0742-8
  • 5. Bruinsma SL, Marty JC, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. In: ESA living planet symposium, 28 June–2 July 2010, Bergen, Norway
  • 6. Carrion D, Vergos G, Albertella A, Barzaghi R, Tziavos IN, Grigoriadis VN (2015) Assessing the GOCE models accuracy in the Mediterranean area. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 7. Casotto S, Gini F, Panzetta F, Bardella M (2013) Fully dynamic approach for GOCE precise orbit determination. B Geofis Teor Appl 54(4):367–384. https://doi.org/10.4430/bgta0108
  • 8. Chen Q, Shen Y, Zhang X, Chen W, Hsu H (2015) Tongji-GRACE01: a GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach. Adv Space Res 56(5):941–951. https://doi.org/10.1016/j.asr.2015.05.034
  • 9. Cheng M, Ries JC (2015) Evaluation of GOCE gravity models with SLR orbit tests. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 10. Drewes H (2012) International centre for global earth models (ICGEM). In: The geodesist’s handbook 2012, J Geodesy 86(10):787–974. https://doi.org/10.1007/s00190-012-0584-1
  • 11. Drożyner A (1995) Determination of orbits with Toruń Orbit Processor system. Adv Space Res 16(12):93–95. https://doi.org/10.1016/0273-1177(95)98788-p
  • 12. ESA (2010), GOCE Level 2 product data handbook, European GOCE gravity consortium. In: ESA Tech. Note GO-MA-HPF-GS-0110, European Space Agency, Noordwijk
  • 13. Eshagh M, Najafi-Alamdari M (2007) Perturbations in orbital elements of a low Earth orbiting satellite. J Earth Space Phys 33(1):1–12
  • 14. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma S, Koenig R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abstracts 10:EGU2008-A-03426
  • 15. Förste C, Bruinsma SL, Flechtner F, Marty JC, Dahle C, Abrikosov O, Lemoine JM, Neumayer H, Barthelmes F, Biancale R, König R (2014) EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ potsdam and GRGS Toulouse. Geophys Res Abstracts 16:3707
  • 16. Gruber Th, Visser PNAM, Ackermann Ch, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geodesy 86:807–818. https://doi.org/10.1007/s00190-011-0484-9
  • 17. Guo JY, Shang K, Jekeli C, Shum CK (2015) On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astr 121(4):415–429
  • 18. Hirt C, Rexer M, Claessens S (2015) Topographic evaluation of fifth-generation GOCE gravity field models globally and regionally. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 19. Kvas A, Mayer-Gürr T, Zehentner N, Klinger B (2014) ITSG-Grace2014 s: combined estimation of Earth’s static and time variable gravity field. In: Geodätische Woche 2014, Berlin, Germany
  • 20. Lejba P, Schillak S, Wnuk E (2007) Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella. Adv Space Res 40(1):143–149. https://doi.org/10.1016/j.asr.2007.01.067
  • 21. Matos ACOC, Blitzkow D, Nascimento Guimarães G, Lobianco MCB, Oliveira Campos I (2015) Evaluation of recent GOCE geopotential models in South America. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 22. Mayer-Gürr T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. In: GRACE Science team meeting, Potsdam, Germany, September 29 2014–October 1 2014
  • 23. Melbourne W, Anderle R, Feissel M, King R, McCarthy D, Smith D, Tapley B, Vincente R (1983) Project MERIT standards. In: U.S. Naval Observatory Circulars 167, Washington, DC
  • 24. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/2011jb008916
  • 25. Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwinzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth gravity field and seasonal variability from CHAMP. In: Earth observation with CHAMP—results from three years in orbit. Springer, Berlin, pp 25–30
  • 26. Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790. https://doi.org/10.1007/s00190-011-0500-0
  • 27. Sośnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012) Sensitivity of LAGEOS orbits to global gravity field models. Artif Sat 47(2):47–65. https://doi.org/10.2478/v10018-012-0013-y
  • 28. Šprlák M, Gerlach C, Pettersen BR (2015) Validation of GOCE global gravitational field models in Norway. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 29. Standish EM, Newhall XX, Williams JG, Yeomans DK (1992) Orbital ephemerides of the sun, moon and planets. In: Seidelmann PK (ed) Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley, pp 279–323
  • 30. Strugarek D, Sośnica K, Jäggi A (2018) Characteristics of GOCE orbits based on satellite laser ranging. Adv Space Res 63:417–431. https://doi.org/10.1016/j.asr.2018.08.033
  • 31. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. https://doi.org/10.1029/2004gl019920
  • 32. Tsoulis D, Papanikolaou TD (2012) Numerical investigation of different gravity models in orbit propagation of two short CHAMP and GRACE-A Arcs. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy. International Association of Geodesy Symposia, vol 137. Springer, Berlin, ISBN 978-3-642-22078-4, https://doi.org/10.1007/978-3-642-22078-4_42
  • 33. Tsoulis D, Papanikolaou TD (2013) Degree-wise validation of satellite-only and combined Earth gravity models in the frame of an orbit propagation scheme applied to a short GOCE arc. Acta Geod Geophys 48:305–316. https://doi.org/10.1007/s40328-013-0020-x
  • 34. Tsoulis D, Papanikolaou TD (2014) Dynamic orbit parametrization and assessment in the frame of GOCE gravity models. Phys Earth Planet Inter 236:1–9. https://doi.org/10.1016/j.pepi.2014.08.003
  • 35. Voigt C, Denker H (2015) Validation of GOCE gravity field models in Germany. In: Assessment of GOCE geopotential models, Newton’s bull. 5, June 2015
  • 36. Xu X, Zhao Y, Reubelt T, Tenzer R (2017) A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. J Geod Geodyn 8(4):260–272. https://doi.org/10.1016/j.geog.2017.03.013
  • 37. Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22. https://doi.org/10.1016/j.jog.2013.10.004
  • 38. Zhou H, Luo Z, Zhou Z, Zhong B, Hsu H (2017) HUST-Grace2016 s: A new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period. Adv Space Res 60(3):597–611. https://doi.org/10.1016/j.asr.2017.04.026
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a44ff609-432b-4e67-9d12-df7c65c93331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.