PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and simulation study on stiffness of basalt fiber-reinforced plastic door interior trimming panel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Basalt fiber-reinforced polypropylene composites have been widely used in industrial production for lightweight designs owing to their low price, good mechanical properties and environmental friendliness. In this study, the automotive door interior trimming panel composed of basalt fiber (BF) reinforced polypropylene (PP) was prepared by injection molding. The effects of BF on the stiffness of PP automotive door interior trimming panels were studied by experiment and simulation. The indentation test was carried out by digital image correlation (DIC) technology. The finite element simulation (FES) was conducted and the result was compared with that of experiment to verify the accuracy of the FES. Then, the stiffness test and the FES of the automotive door interior trimming panels were implemented to study the effect of basalt fiber on the stiffness of polypropylene. Furthermore, the thickness of the automotive door interior trimming panel was optimized by stiffness simulation. The results showed that the indentation test had a great agreement with the FES results. The addition of BF could effectively improve the stiffness of polypropylene plastic automotive interior panel. The BF-reinforced polypropylene plastic automotive door interior trimming panel with a thickness of 1.0 mm had the same stiffness with polypropylene plastic automotive door interior trimming panel with a thickness of 2.4 mm.
Rocznik
Strony
art. no. e53, 2023
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
Bibliografia
  • 1. Yao Y, Jing L, Wang S, Li G, Cui J, Tang X, Jiang H. Mechanical properties and joining mechanisms of Al-Fe magnetic pulse welding by spot form for automotive application. J Manuf Process. 2022;76:504-17. https://doi.org/10.1016/j.jmapro.2022.02.017.
  • 2. Sharifzadeh M, Shaeri MH, Taghiabadi R, Mozaffari F, Ebrahimi M. Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al-Mg2Si composites. Arch Civ Mech Eng. 2020;33:20. https://doi.org/10.1007/s43452-020-00020-6.
  • 3. Nematzadeh M, Dashti J, Sabetifar H, Gholampour A, Arjomandi A. Combined effect of handmade CFRP strip stirrups and forta-ferro fibers on shear behavior of concrete beams. Arch Civ Mech Eng. 2022;22:156. https://doi.org/10.1007/s43452-022-00469-7.
  • 4. Cui G, Meng L, Zhai X. Buckling behaviors of aluminum foam-filled aluminum alloy composite columns under axial compression. Thin Wall Struct. 2022;177:109399. https://doi.org/10.1016/j.tws.2022.109399.
  • 5. Paidar M, Kazemi A, Mehrez S, Ojo OO, Nasution MKM, Mironov SN. Investigation of modified friction stir clinching-brazing process of AA2024 Al/AZ31 Mg: metallurgical and mechanical properties. Arch Civ Mech Eng. 2021;115:21. https://doi.org/10.1007/s43452-021-00267-7.
  • 6. Zhu Q, Huang S, Wang D, Li J, Hua F, Yang P. Numerical simulation and experimental study of warm hydro-forming of magnesium alloy sheet. J Manuf Process. 2022;80:43-53. https://doi.org/10.1016/j.jmapro.2022.05.054.
  • 7. Ravisankar H, Hariprasadarao P, Chittaranjan VD, Bhanukiran G. Effect of nanoclay inclusion on mechanical and fatigue behavior of ABS/PP/HDPE thermoplastics. Mater Today Proc. 2020;24:209-17. https://doi.org/10.1016/j.matpr.2020.04.269.
  • 8. Ouardi A, Wahid A, Sadoki B, Mouhib N, ELghorb M. Effect of residual stresses on the fracture of polypropylene (PPR) pipes. Theor Appl Fract Mec. 2022;119:103330. https://doi.org/10.1016/j.tafmec.2022.103330.
  • 9. Randall J, Stojcevski F, Djordjevic N, Hendlmeier A, Dharmasiri B, Stanfield M, Knorr D, Tran N, Varley R, Henderson L. Carbon fiber polypropylene interphase modification as a route to improved toughness. Compos Part A Appl Sci Manuf. 2022;18:107001. https://doi.org/10.1016/j.compositesa.2022.107001.
  • 10. Kim G, Kil T, Lee H. A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Compos Struct. 2021;258:113377. https://doi.org/10.1016/j.compstruct.2020.113377.
  • 11. Cui J, Wang S, Wang S, Li G, Wang P, Liang C. The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers. 2019. https://doi.org/10.3390/polym11122 019.
  • 12. Bernardi C, Toury B, Salvia M, Contraires E, Dubreuil F, Virelizier F, Ourahmoune R, Surowiec B, Benayoun S. Effects of flaming on polypropylene long glass fiber composites for automotive bonding applications with polyurethane. Int J Adhes Adhes. 2022;113:103033. https://doi.org/10.1016/j.ijadhadh.2021.103033.
  • 13. Wang S, Yao Y, Tang C, Li G, Cui J. Mechanical characteristics, constitutive models and fracture behaviors of short basalt fiber reinforced thermoplastic composites under varying strain rates. Compos Part B-Eng. 2021;218:108933. https://doi.org/10.1016/j.compositesb.2021.108933.
  • 14. Vigneshwaran G, Shanmugavel B, Paskaramoorthy R, Harish S. Tensile, impact, and mode-I behaviour of glass fiber-reinforced polymer composite modified by graphene nanoplatelets. Arch Civ Mech Eng. 2020;94:20. https://doi.org/10.1007/s43452-020-00099-x.
  • 15. Xing D, Chang C, Xi X, Hao B, Zheng Q, Gutnikov SI, Lazoryak BI, Ma P. Morphologies and mechanical properties of basalt fibre processed at elevated temperature. J Non-Cryst Solids. 2022;582:121439. https://doi.org/10.1016/j.jnoncrysol.2022.121439.
  • 16. Wu Q, Deng H, Bai H, Ye Z, Chen X, Zhu J. Facile and eco-friendly functionalization of basalt fiber with polyelectrolyte complex toward excellent interfacial adhesion of epoxy composites. Compos Part A Appl Sci Manuf. 2022;156:106889. https://doi.org/10.1016/j.compositesa.2022.106889.
  • 17. Lei Z, Zhou D, Wang J. Seismic performance of severely seismically damaged masonry walls strengthened by BFRP. J Cent South Univ. 2013;44(12):5084-92.
  • 18. Zhu L, Lyu L, Wang Y, Qian Y, Zhao Y, Wei C, Guo J. Axial-compression performance and finite element analysis of a tubular three-dimensional-woven composite from a meso-structural approach. Thin Wall Struct. 2020;157:107074. https://doi.org/10.1016/j.tws.2020.107074.
  • 19. Refai A, Alnahhal W, Al-Hamrani A, Hamed S. Shear performance of basalt fiber-reinforced concrete beams reinforced with BFRP bars. Compos Struct. 2022;288:115443. https://doi.org/10.1016/j.compstruct.2022.115443.
  • 20. Chen D, Sun G, Meng M, Jin X, Li Q. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin Wall Struct. 2019;142:516-31. https://doi.org/10.1016/j.tws.2019.03.056.
  • 21. Yorseng K, Rangappa SM, Parameswaranpillai J, Siengchin S. Towards green composites: bioepoxy composites reinforced with bamboo/basalt/carbon fabrics. J Clean Prod. 2022;363:132314. https://doi.org/10.1016/j.jclepro.2022.132314.
  • 22. Dhand V, Mittal G, Rhee K, Park S, Hui D. A short review on basalt fiber reinforced polymer composites. Compos Part B-Eng. 2015;73:166-80. https://doi.org/10.1016/j.compositesb.2014.12.011.
  • 23. Ralph C, Lemoine P, Archer E, McIlhagger A. Mechanical properties of short basalt fiber reinforced polypropylene and the effect of fiber sizing on adhesion. Compos Part B-Eng. 2019;176:107260. https://doi.org/10.1016/j.compositesb.2019.107260.
  • 24. Czigany T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66:3210-20. https://doi.org/10.1016/j.compscitech.2005.07.007.
  • 25. Botev M, Betchev H, Bikiaris D, Panayiotou C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl Polym Sci. 1999;74:523-31. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3%3c523::AID-APP7%3e3.0.CO.
  • 26. Bandaru A, Patel S, Sachan Y, Ahmad S, Alagirusamy R, Bhatnagar N. Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos Part A Appl Sci Manuf. 2016;90:642-52. https://doi.org/10.1016/j.compositesa.2016.08.031.
  • 27. Balaji KV, Kamyar S, Guru SR, Amanda VE, Minoo N. Surface treatment of Basalt fiber for use in automotive composites. Mater Today Chem. 2020;17:100334. https://doi.org/10.1016/j.mtchem.2020.100334.
  • 28. Monaldo E, Nerilli F, Vairo G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos Struct. 2019;214:246-63. https://doi.org/10.1016/j.compstruct.2019.02.002.
  • 29. Pak S, Park S, Song YS, Lee D. Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites. Compos Struct. 2018;193:73-9. https://doi.org/10.1016/j.compstruct.2018.03.020.
  • 30. Wang S, Zhong J, Gu Y, Li G, Cui J. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polym Compos. 2020;41:4181-91. https://doi.org/10.1002/pc.25702.
  • 31. American Society for Testing and Materials. ASTM D6264-98 standard test method for measuring the damage resistance of a fiber-reinforced polymer-matrix composite to a concentrated quasi-static indentation force. Philadelphia: American Society for Testing and Materials; 2004.
  • 32. Tang Y, Wang M, Wang D. Dashboard stiffness design requirements and improvement analysis. J Automot Parts. 2014;2:41-4.
  • 33. Lee S, Chun S, Doh G, Kang I. Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater. 2009;43:1639. https://doi.org/10.1177/0021998309339352.
  • 34. Botev M, Betchev H, Bikiaris D, Panayiotou C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl Polym Sci. 1999;74:523-31. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3%3c523::AID-APP7%3e3.0.CO;2-R.
  • 35. Yao Y, Cui J, Wang S, Xu L, Li G, Pan H, Bai X. Comparison of tensile properties of carbon fiber, basalt fiber and hybrid fiber reinforced composites under various strain rates. Appl Compos Mater. 2022;29:1147-65. https://doi.org/10.1007/s10443-022-10012-9.
  • 36. Wang S, Wang S, Li G, Cui J. Dynamic response and fracture analysis of basalt fiber reinforced plastics and aluminum alloys adhesive joints. Compos Struct. 2021;268:114013. https://doi.org/10.1016/j.compstruct.2021.114013.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a44a643a-c28e-464a-b6af-4021b82cb562
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.