Identyfikatory
Warianty tytułu
Rauhut-Currier reaction : from classical methods to modern solutions
Języki publikacji
Abstrakty
The formation of carbon-carbon bonds is a fundamental aspect of organic synthesis, serving as a key step in the construction of complex molecules with biological and pharmaceutical significance. In recent years, chemists have focused on developing new methods that not only expand the scope of available reactions but also enable control over stereoselectivity, which is particularly important in the context of asymmetric synthesis. One reaction that has gained increasing attention in this field is the Rauhut-Currier (RC) reaction. The RC reaction, based on conjugate addition, allows the creation of new carboncarbon bonds through the reaction between α,β-unsaturated compounds containing carbonyl groups. Although its mechanism was described several decades ago, modern research is centered on discovering new catalysts, both organic and metallic, that enable the reaction to proceed more efficiently and selectively. The development of organocatalysis plays a crucial role here, as it allows the reaction to be conducted under milder conditions, while simultaneously increasing the yield and enantioselectivity. This review presents the latest advancements in the field of the Rauhut-Currier reaction, with a particular focus on the development of enantioselective variants of the reaction and the research into new catalysts. Furthermore, its application in the synthesis of natural products and pharmaceutically important compounds is discussed, highlighting the growing role of this reaction in modern organic synthesis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1675--1696
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
- Katedra Chemii Biomedycznej, Wydział Chemii, Uniwersytet Gdański ul. Wita Stwosza 63, 80-308 Gdańsk
autor
- Instytut Chemii Organicznej, Polska Akademia Nauk ul. Kasprzaka 44/52, 01-224 Warszawa
Bibliografia
- [1] K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn., 1968, 41, 2815.
- [2] A. B. Baylis, M.E.D. Hillman, German Patent 2155113, 1972.
- [3] Y. Wei, M. Shi, Chem. Rev., 2013, 113, 6659.
- [4] N. Skrzypczak, K. Pyta, W. Bohusz, A. Leśniewska, M. Gdaniec, P. Ruszkowski, W. Schilf, F. Bartl, P. Przybylski, J. Org. Chem., 2023, 88, 9469.
- [5] D. Łowicki, P. Przybylski, Eur. J. Med. Chem., 2022, 235, 114303.
- [6] P. Banachowicz, Sz. Buda, J. Młynarski, Org. Chem., 2018, 83, 11269.
- [7] M. Rauhut, H. Currier, US Patent 3074999, 1963, 2.
- [8] M. Baizer, J. Anderson, J. Org. Chem., 1965, 30, 1357.
- [9] J. D. McClure, J. Org. Chem., 1970, 9, 3045.
- [10] Y. Q. Li, G. D. Xu, Z. Z. Huang, Org. Biomol. Chem., 2021, 19, 2487.
- [11] D. Stevanović, J. Bugarinović, M. Pešić, A. Todosijević, G. A. Bogdanović, I. Damljanović, RSC Adv., 2021, 11, 36208.
- [12] D. Basavaiah, V. Gowriswarl, T. K. Bharathi, Tetrahedron Lett., 1987, 28, 4591.
- [13] W. Liu, J. Zhou, C. Zheng, X. Chen, H. Xiao, Y. Yang, Y. Guo, G. Zhao, Tetrahedron, 2011, 67, 1768.
- [14] S. E. Drewes, N. D. Emslie, N. Karodia, Synth. Commun., 1990, 20, 1915.
- [15] A. K. Jha, H. Inani, S. Easwar, Results Chem., 2022, 4, 1.
- [16] I. Hwu, G. Hakimelahi, T. Ghoul, Tetrahedron Lett., 1982, 33, 6469.
- [17] N. Bania, B. Mondal, S. Ghosh, S. C. Pan, J. Org. Chem., 2021, 86, 4304.
- [18] P. Shanbhag, P. R. Nareddy, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri, Org. Biomol. Chem., 2010, 8, 4867.
- [19] F. S. A. Frank, D. J. Mergott, W. R. Roush, J. Am. Chem. Soc., 2002, 124, 2404.
- [20] L. C. Wang, A. L. Luis, K. Agapiou, H. Y. Jang, M. J. Krische, J. Am. Chem. Soc., 2002, 124, 2402.
- [21] P. M. Brown, N. Käppel, P. J. Murphy, S. J. Coles, M. B. Hursthouse, Tetrahedron, 2007, 63, 1100.
- [22] E. Marqués-López, R. P. Herrera, T. Marks, W. C. Jacobs, D. Könning, R. M. de Figueiredo, M. Christmann, Org. Lett., 2009, 11, 4116.
- [23] S. Bertelsen, K. A. Jorgensen, Chem. Soc. Rev., 2009,38, 2178.
- [24] V. d. G. Oliveira, M. F. d. C. Cardoso, L. d. S. M. Forezi, Catalysts, 2018, 8, 605.
- [25] E. Reyes, L. Prieto, A. Milelli, Molecules, 2023, 28, 271.
- [26] C. E. Aroyan, A. Dermenci, S. J. Miller, J. Org. Chem., 2010, 75, 5784.
- [27] S. Osuna, A. Dermenci, S. J. Miller, K. N. Houk, Chem. Eur. J., 2013, 19, 14245.
- [28] C. Aroyan, S. J. Miller, J. Am. Chem. Soc., 2007, 129, 256.
- [29] P. S. Selig, S. J. Miller, Tetrahedron Lett., 2011, 52, 2148.
- [30] E. Marqués-López, R.P. Herrera, T. Marks, W.C. Jacobs, M. Christmann, Synthesis, 2013, 45, 1016.
- [31] S. Takizawa, M. Sako, K. Kishi, M. Shigenobu, G. Vo-Thanh, H. Sasai, Chem. Pharm. Bull., 2017, 65, 997.
- [32] W. Yao, X. Dou, S. Wen, J. Wu, J. J. Vittal, Y. Lu, Nat. Commun., 2016, 7, 1.
- [33] X. N. Zhang, M. Shi, Eur. J. Org. Chem., 2012, 6271.
- [34] F. l. Hu, Y. Wei, M. Shi, Adv. Synth. Catal., 2014, 356, 736.
- [35] S. Takizawa, T. M. N. Nguyen, A. Grossmann, D. Enders, H. Sasai, Angew. Chem., 2012, 51, 5423.
- [36] R. J. H. Scanes, O. Grossmann, A. Grossmann, D. R. Spring, Org. Lett., 2015, 17, 2462.
- [37] J. J. Gong, T. Z. Li, K. Pan, X. Y. Wu, Chem. Comm., 2011, 47, 1491.
- [38] K. Li, Z. Jin, W. L. Chan, Y. Lu, ACS Catal., 2018, 8, 8810.
- [39] X. Zhou, H. Nie, X. Liu, X. Long, R. Jiang, W. Chen, Catal. Commun., 2019, 121, 78.
- [40] X. Su, W. Zhou, Y. Li, J. Zhang, Angew. Chem., 2015, 127, 6978.
- [41] S. Bae, C. Zhang, R. M. Gillard, D. W. Lupton, Angew. Chem., 2019, 58, 13370.
- [42] V. Pitchumani, M. Breugst, D. W. Lupton, Org. Lett., 2021, 23, 9413.
- [43] A. Buchcic-Szychowska, S. Leśniak, M. Rachwalski, Symmetry, 2022, 14, 1631.
- [44] A. F. Keppler, R. A. Gariani, D. G. Lopes, J. Comasseto, Tetrahedron Lett., 2009, 50, 2181.
- [45] J. Comasseto, P. A. Gariani, J. L. Princival, A. A. dos Santos, F. K. Zinn, J. Organomet. Chem., 2008, 693, 2929.
- [46] G. Całka-Kuc, S. Buda, AppliedChem, 2022, 2, 59.
- [47] X. Dong, L. Liang, E. Li, Y. Huang, Angew. Chem., 2015, 54, 1621.
- [48] M. Tao, W. Zhou, J. Zhang, Adv. Synth. Catal., 2017, 359, 3347.
- [49] C. Qin, Y. Liu, Y. Yu, Y. Fu, H. Li, W. Wang, Org. Lett., 2018, 20, 1304.
- [50] S. Li, Y. Liu, B. Huang, T. Zhou, H. Tao, Y. Xiao, L. Liu, J. Zhang, ACS Catal., 2017, 7, 2805.
- [51] T. C. Kang, L. P. Wu, Q. W. Yu, X. Y. Wu, Chem. Eur. J., 2017, 23, 6509.
- [52] D. J. Mergott, S. A. Frank, W. R. Roush, PNAS, 2004, 101, 11955.
- [53] H. Amri, M. Rambaud, J. Villieras, Tetrahedron Lett., 1989, 30, 7381.
- [54] L. R. Reddy, P. Saravanan, E. J. Corey, J. Am. Chem. Soc., 2004, 126, 6230.
- [55] S. Jeon, S. Han, J. Am. Chem. Soc., 2017, 139, 6302.
- [56] S. Jeon, J. Park, S. Han,. Synlett. 2017, 28, 2353.
- [57] J. Park, S. Jeon, G. Kang, J. Lee , M. H. Baik, S. Han, J. Org. Chem., 2019, 84, 1398.
- [58] L. M. Stark, K. Pekari, E. J. Sorensen, K. C. Nicolaou, PNAS, 2004, 101, 12064.
- [59] A. Dermenci, P. S. Selig, R. A. Domaoal, K. A. Spasov, K. S. Anderson, S. Miller, J. Chem. Sci., 2011, 2, 1568.
- [60] K. Agapiou, M. Krische, J. Org. Lett., 2003, 5, 1737.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a4495464-8925-4e08-89e8-b983876e0f60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.