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Uncertainty analysis of operational conditions in
selective artificial ground freezing applications

Ahmad Zueter, Saad Akhtar, Agus Sasmito*

McGill University, Mining Engineering Department, Montreal, Quebec, Canada

Abstract

Artificial ground freezing (AGF) systems are susceptible to uncertain parameters highly affecting their performance.
Particularly, selective artificial ground freezing (S-AGF) systems involve several uncertain operational conditions. In this
study, uncertainty analysis is conducted to investigate four operational parameters: 1) coolant inlet temperature,
2) coolant flow rate, 3) pipes emissivity, and 4) pipes eccentricity. A reduced-order model developed and validated in our
previous work for field-scale applications is exploited to simulate a total of 5000 cases. The uncertain operational pa-
rameters are set according to Monte Carlo analysis based on field observations of a field-scale freeze-pipe in the mining
industry extending to 460m below the ground surface. The results indicate that the freezing time can range between 270
and 350 days with an average of 310 days, whereas the cooling load per one freeze-pipe ranges from 90 to 160MWh, with
an average of 129MWh. Furthermore, it is observed that the freezing time and energy consumed are mostly dominated
by the coolant inlet temperature, while energy dissipated in the passive zone (where ground freezing is not needed) is
mostly affected by pipes emissivity. Overall, the conclusions of this study provide useful estimations for engineers and
practitioners in the AGF industry.

Keywords: selective artificial ground freezing, Monte Carlo, pipes eccentricity, uncertainty analysis, reduced-order
modelling

1. Introduction

A rtificial ground freezing (AGF) is widely
employed to enhance the safety of mining

systems by creating a solid impenetrable ground
that stabilizes mine infrastructure [1e3] and contain
mining contaminants [4]. Selective artificial ground
freezing (S-AGF) is particularly useful in under-
ground mining applications where the orebody is
located hundreds of meters below the ground sur-
face. The main advantage of S-AGF over other
conventional AGF methods is the addition of air
cavity to decrease heat gained by the coolant in the
passive zone located away from the orebody.
Accordingly, the required cooling load of the
coolant decreases, resulting in more environmen-
tally-friendly systems that minimize energy expen-
ditures and greenhouse gas emissions [5]. Such
S-AGF systems have been employed in the Cigar
Lake Mine (Saskatchewan, Canada) [6] and the Banji

Mine (Anhui, China) [7]. However, AGF systems
involve several uncertain parameters that highly
affect the progress of the frozen ground in the active
zone, where ground freezing is desired, and the
overall cooling load [8e10]. For instance, the cooling
brine is provided at a variable range of tempera-
tures and volume flow rates. Further, S-AGF appli-
cations are susceptible to additional uncertainty due
to the air cavity installation difficulties. Typically,
the air cavity is created by connecting 10-m-long
piping segments over a depth of 400m. While it is
desired to form a concentric air cavity, as shown in
Fig. 1(a), the middle pipes often collide with the
casing in a zigzag profile, as shown in Fig. 1(b). The
uncertain extent of the collision, as well as walls
emissivity, can greatly impact the heat gained in the
passive zone.
To better understand the impact of uncertain pa-

rameters in mining operations, several studies have
conducted risk management supported with uncer-
tainty analysis. Spandis et al. [11] proposed a novel
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methodology for risk assessment of surface mining
natural hazards based on the triangular Fuzzy
Analytical Hierarchy Process (FAHP). The FAHP
process is also coupled with Monte Carlo simulation
and the Program Evaluation Review Technique
(PERT) method to predict uncertain outcomes. As for
the uncertain analysis of AGF systems, most studies
examined the effect of ground geological parameters
on the growth of the frozen ground. Qiu et al. [12]
modeled seepage flow considering variable ground
thermal conductivity employing Monte-Carlo simu-
lations. Wang et al. [13] added the uncertainty of the
ground heat capacity and latent heat also using
Monte-Carlo simulations based on 1D freezing
models. Wang et al. [14] then carried out additional
1D freezing experiments to find the coefficient of
variation (CoV) and scale of fluctuation (SoF) of
uncertain hydrothermal properties including ground
thermal diffusivity, moisture diffusivity, and freezing
temperature. The CoV and SoF were utilized to
formulate a stochastic hydrothermal model. After-
wards, Wang et al. [15] extended the stochastic
model from 1D freezing around a single freeze-pipe
to 2D freezing around a multi-circle freezing pipe.
Besides geological uncertainties of the ground, Liu
et al. [16] considered installation uncertainties,
namely freeze-pipe inclination using Monte-Carlo
analysis based on 3D freezing models.
In regards to S-AGF applications in particular, the

literature is limited to experimental and mathe-
matical studies that do not consider the various
operational and installation uncertainties. Wang
et al. [7] developed a numerical model for S-AGF to

anticipate the frozen ground's expansion for the
Banji Mine case. Vitel et al. [17] derived and vali-
dated a ground freezing model of S-AGF that
particularly examines the active zone of the Cigar
Lake Mine. Tounsi et al. [18] incorporated a me-
chanical model to estimate ground displacement
associated with the ground freezing process in the
active zone as well. Zueter et al. [6] conducted the
first controlled experimental study of selective arti-
ficial ground freezing, associated with a mathemat-
ical model based on the enthalpy-porosity method
[19,20]. Afterwards, Zueter et al. [21] developed
reduced-order models for S-AGF applications to
enhance the computational speed of field scenarios,
which usually occupy large computational domain
and operate for long periods. Zueter et al. [22] then
employed the reduced-order model to examine the
impact of freeze-pipe eccentricity on heat dissipa-
tion in the passive zone.
While the uncertainty of geological parameters

has been addressed in the literature on AGF, several
operational parameters and installation issues have
not been examined, especially in S-AGF applica-
tions. Uncertainty of operational parameters brings
about unpredictable energy consumption and
freezing time of mines adopting S-AGF, such as the
Cigar Lake Mine. This affects the associated costs
and timeline of the mining operations. Accordingly,
this study utilizes reliable conjugate models devel-
oped in our previous work [22] to understand the
uncertain effect of operational and installation pa-
rameters on the frozen ground development and the
cooling load of S-AGF applications. Particularly, the

Fig. 1. Comparison between an ideal and unideal selective artificial ground freezing (S-AGF) system: (a) ideal system where all pipes are concentric
around the same central axis; (b) unideal system where the inner and middle pipes zigzag along the casing due to installation difficulties. The arrows
represent the coolant inlet and outlet. All dimensions are in meters (not-to-scale).[22] Received copyright permission from the ASME to reproduce this
figure in this article.
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study considered four main parameters not
addressed in previous studies: 1) coolant inlet tem-
perature, 2) coolant flow rate, 3) pipes emissivity,
and 4) collision contact length between inner pipes
and casing.
To this end, computationally efficient reduced-

order models that have been derived and validated
in our previous work [22] are utilized simulating
a total of 5000 cases throughout this study. The
article is organized as follows. In section 2, the
mathematical model is shown as derived in our
previous work [22]. After that, the input data to the
Monte Carlo analysis are set in section 3. The results
are presented in section 4, where the most likely
frozen ground growth and cooling load are evalu-
ated. Finally, the individual impact of uncertain
parameters is analysed.

2. Materials and methods

A conjugate reduced-order numerical model
developed in our previous work [22] is employed in
the present study to monitor the frozen ground
expansion in the active zone as well as the overall
cooling load. This model is chosen due to its high
computational efficiency, which is essential in this
study for simulating 5000 cases. Furthermore, the
model is based on a space-marching algorithm that
monitors the evolution of the coolant thermal
energy to evaluate the cooling load, as will be
mathematically demonstrated in this section.

2.1. Governing equations and boundary conditions

The computational domain of the system is made
up of a porous saturated ground surrounded by
various boundaries. The governing equation of the
ground thermal energy is based on a two-phase
transient enthalpy method [23] given as

vHg

vt
¼V,

�
kgVTg

� ð1Þ

where t; Hg, kg, and Tg represent time, ground
enthalpy, ground thermal conductivity, and ground
temperature, respectively. In this study, the local
thermal equilibrium assumption [24] between the
sand particles and ground water content is consid-
ered valid, as demonstrated in our previous work
[19,25]. The ground enthalpy is calculated based on
the ground temperature as

Hg¼ð1�gÞ
ZTg

Tref

�
rgcp;g

�
f dTgþg

ZTg

Tref

�
rgcp;g

�
u dTg

þ4grwLw ð2Þ

where rgcp;g is the volumetric sensible heat capacity
of the ground, rwLw is the volumetric latent heat
capacity of the water content, and Tref is an arbitrary
reference temperature. Subscripts f and u refer to
ground frozen and unfrozen states, respectively.
Further, 4 denotes the ground porosity, whereas
g represents the liquid fraction of the water content
calculated as

g¼

�
0; Tg<Tsol�
Tg � Tsol

���
Tliq � Tsol

�
; Tsol<Tg<Tliq

1; Tg>Tliq

ð3Þ

where Tliq and Tsol represent the liquidus and soli-
dus temperatures of the water content, respectively.
In this study, the liquidus and solidus temperatures
are set at 0 and �0.50 �C as per the experimental
measurements of Zueter et al. [6]. The equivalent
ground thermal conductivity is calculated based on
the parallel arrangement approach [24] as

kg¼ð1�gÞkf þ gku ð4Þ
The ground is surrounded by several bound-

aries. Atmospheric convection is set along the top
boundary of the domain along the ground surface,
given as [26].

�kg
vTground surface

vn
¼ hatm

�
Tground surface�Tatm

� ð5Þ

where n is a vector perpendicular to the boundary,
hatm is the atmospheric heat transfer coefficient, and
Tatm is the atmospheric temperature. Atmospheric
temperature data of the Cigar Lake Mine is
considered in this study fitted in a sinusoidal func-
tion as

Tatm¼267�21:3 cos
�
2 $ 10�7t

�� 1:7sin
�
2 $ 10�7t

�
ð6Þ

Geothermal heat flux is set at the bottom
boundary of the domain as [26].

qgeo¼ � kg
vTbottom boundary

vn
ð7Þ

where qgeo ¼ 0:06
�
W
m2

�
. The axis of symmetry below

the pipe is modeled considering zero thermal
gradient perpendicular to the boundary [26] as
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�kg
vTaxis

vn
¼ 0 ð8Þ

The distance between the freeze-pipe and the
side boundary at the east of the computational is set
according to the freeze-pipe spacing in fields.
Typically, around 6m is set between adjacent pipes;
accordingly, each pipe is required to freeze a radial
distance of 3m. Thus, the east boundary is displaced
3m away from the central axis of the freeze-pipe
and is mathematically expressed considering zero
thermal gradient as

�kg
vTeast

vn
¼ 0 ð9Þ

Mathematical modeling of the boundaries
along the freeze-pipe in the active and passive zones
is elaborately derived and presented in detail in our
previous work [22]. Starting with the passive zone,
given the very high aspect ratio of the air cavity in
this study, the natural convection of air is negligible
as compared to radiation and conduction [27]. The
combined radiation and conduction heat transfer
coefficient, Upassive, is derived as [22].

Upassive¼ Skair
pðDout þ 2dÞ þ

Din3s

Dout þ 2d

�
T2
g;passiveþT2

c

	

� �
Tg;passiveþTc

� ð10Þ

where the first and second terms on the right-hand
side represent the contribution of conduction and
radiation, respectively. Further, Dout, Din, and
d denote the outer diameter of the air cavity, the inner
diameter of the air cavity, and thickness of the casing.
Also, Tc represents the coolant temperature, whereas
the Greek symbols e and s denote pipes emissivity
and Boltzmann radiation constant, respectively. S is
the conduction shape factor that captures the eccen-
tric impact of the air cavity expressed as [26].

S¼2pcosh�1


D2

in þD2
out � 4l

2DinDout

�
ð11Þ

where l is the linear eccentricity of the air cavity. The
overall heat transfer coefficient, Upassive, is coupled to
the computational domain along the freeze-pipe
wall of the passive zone as

�kg
vTfreeze pipe

vn
¼ Upassive

�
Tfreeze pipe �Tc

� ð12Þ

As for the active zone, convective heat extrac-
tion by the coolant is modelled following the
analytical correlations of a laminar flow in an
eccentric annular cavity derived in our previous
work [22] (based on the analytical derivation of
Michael and Trombetta [28]) as

hactive¼F
�
3:4e2�6:6eþ4:9

�
kc
�
l ð13Þ

where kc is the thermal conductivity of the coolant,
l is the characteristic length of the flow (which is
equivalent to the difference between the casing
inner diameter and the inner tube outer diameter), F
is a correction factor to address the impact of the
development of the flow thermal boundary layer
(F¼ 1.5 in the previous study [22]). Further, the
variable e is defined as

e¼ di
Ro �Ri

ð14Þ

where Ri is the outer radius of the inner tube, Ro is
the inner radius of the casing, and di is the absolute
distance between the centre of the casing and the
centre of the inner tube. Coupling between the
ground and freeze pipe at the active zone is
modelled as

�kg
vTfreeze pipe

vn
¼ hactive

�
Tfreeze pipe�Tc

� ð15Þ
Finally, the evolution of the coolant tempera-

ture along the freeze-pipe is calculated per unit
length of the freeze-pipe using the first law of
thermodynamics as

DTc¼
pDcasing q

_mccp;c
ð16Þ

where Dcasing is the outer diameter of the casing, _mc

is the coolant mass flow rate, and cp;c is the coolant
specific heat. The heat flux, q, is determined by
equation (12) in the passive zone and equation (15)
in the active zone. All thermophysical properties of
the ground and the coolant are based on field data
and can be found in our previous work [22].

2.2. Numerical solution algorithm and numerical
parameters

In this study, a total of 5000 simulations were
conducted to understand better the impact of un-
certain parameters in unideal S-AGF systems.
Employing a fast computational algorithm is there-
fore essential to reduce the computational time of
this study to a feasible level. Accordingly,
a computationally efficient space marching algo-
rithm developed in our previous work [21] for
S-AGF systems is used in this study. This algorithm
reduced the computational cost by more than 99%
compared to traditional numerical solvers. In
essence, the space marching algorithm is based on
solving 1D radial grid-lines in series in the direction
of the coolant flow (from the bottom of the pipe to
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the top). Elaborate details on the solution algorithm
can be found in our previous work [21].
The transient and spatial terms of the governing

equations and boundary conditions are discretized
using first-order and second-order accurate
schemes. The numerical tolerance of the tempera-
ture field across the computational domain is set at
1E-5 K. Further, mesh and time-step independence
are ensured in this study. Validation of the mathe-
matical model against our own experimental data
can be found in our previous work [22].

2.3. Monte Carlo simulations

Monte Carlo is a statistical algorithm aiming to
find the most likely outcomes and numeric possi-
bilities resulting from random parameters. Accord-
ingly, the first step is to determine the random
parameters of interest. In general, AGF applications
involve several geological and operational parame-
ters. Since several studies were conducted to
examine the uncertainty of ground geological pa-
rameters (e.g., thermophysical properties of the
ground), this study highlights the impact of uncer-
tain operational parameters. In particular, the

following parameters are considered in this study:
1) coolant inlet temperature, 2) coolant volume flow
rate, 3) pipes emissivity, and 4) collision distance
between inner pipes and casing.
The second step of Monte Carlo simulations is

to determine the probability distribution of uncer-
tain parameters. As observed in the industry, the
coolant inlet ranges between �25 to �35 �C,
whereas the volume flow rate ranges between
1.5 and 2.5 m3/h. Further, pipes emissivity is un-
known and can uniformly range between 0 and 1.
The collision distance, d, also ranges uniformly
between 0 and 1m. The probabilistic distribution
of these parameters is shown in Fig. 2. All
simulations in this study are conducted using
MATLAB/2019b.

3. Results and discussion

Artificial ground freezing systems are often
designed to optimize the freezing time of the
ground while minimizing the cooling load. Thus, in
this study, Monte Carlo analysis is conducted to see
the impact of uncertain operational parameters on
the performance of AGF systems, namely the

Fig. 2. Probabilistic distribution of uncertain parameters in the present study: a) coolant inlet temperature, b) coolant flow rate, c) pipes emissivity, and
d) collision contact length.
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Fig. 3. Probabilistic distribution of output parameters for the first scenario: a) freezing time of the active zone, b) total cooling load, c) cooling load of
the active zone, and d) cooling load of the passive zone.

Fig. 4. Probabilistic distribution of output parameters for the second scenario: a) freezing time of the active zone, b) total cooling load, c) cooling load of
the active zone, and d) cooling load of the passive zone.
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freezing time and the cooling load. Five sets of
simulations/scenarios are conducted, each of which
for 1000 cases (total of 5000): 1) varying all input
parameters, 2) fixing the coolant inlet temperature
at �30 �C while varying other input parameters,
3) fixing the coolant flow rate at 2.5 m3/h while
varying other input parameters, 4) fixing the pipes
emissivity at 0.5 while varying other input parame-
ters, and 5) fixing the collision contact length to 5 cm
while varying other parameters. The last four sets of

Fig. 5. Probabilistic distribution of output parameters for the third scenario: a) freezing time of the active zone, b) total cooling load, c) cooling load of
the active zone, and d) cooling load of the passive zone.

Table 1. Statistical outcomes of scenario 1.

Statistical property Freezing
time [days]

E
[MWh]

Eactive

[MWh]
Epassive

[MWh]

Average 310 129 33.0 96.4
Range 270e350 90e160 29e37 60e130
Standard deviation 17.2 12.3 1.39 11.7

Table 2. Statistical outcomes of scenario 2.

Statistical
property

Freezing
time [days]

E [MWh] Eactive [MWh] Epassive [MWh]

Average 312 129 32.8 95.9
Range 308e316 100e150 32.4e33 60e120
Standard

deviation
1.98 10.6 0.0930 10.7

Table 3. Statistical outcomes of scenario 3.

Statistical
property

Freezing
time [days]

E [MWh] Eactive [MWh] Epassive [MWh]

Average 310 130 33.0 96.7
Range 270e350 90e160 29e37 65e125
Standard

deviation
17.2 12.3 1.39 11.7

Table 4. Statistical outcomes of scenario 4.

Statistical
property

Freezing
time [days]

E [MWh] Eactive [MWh] Epassive [MWh]

Average 310 130 33.0 97.2
Range 270e350 100e150 29e37 75e120
Standard

deviation
17.2 9.17 1.39 8.33

Table 5. Statistical outcomes of scenario 5.

Statistical
property

Freezing
time [days]

E [MWh] Eactive [MWh] Epassive [MWh]

Average 308 118 33.0 84.8
Range 270e350 90e150 29e37 60e110
Standard

deviation
16.7 11.2 1.40 10.6
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Fig. 6. Probabilistic distribution of output parameters for the fourth scenario: a) freezing time of the active zone, b) total cooling load, c) cooling load of
the active zone, and d) cooling load of the passive zone.

Fig. 7. Probabilistic distribution of output parameters for the fifth scenario: a) freezing time of the active zone, b) total cooling load, c) cooling load of
the active zone, and d) cooling load of the passive zone.
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simulations are conducted to understand each sin-
gle variable impact on the outcomes' numeric
probability.

3.1. Varying all input parameters (scenario 1)

First, all input parameters have been varied ac-
cording to Fig. 2. As seen in Fig. 3, the freezing time
is determined to range between 270 and 350 days,
with an average of 310 days as shown in Table 1.
Additionally, the cooling load required by one
freeze-pipe coarsely ranges between 90 and
160MWh at an average of 129MWh. Despite the
insulation layer in the passive zone, the average of
energy consumed in the passive zone is three times
higher than that of the active zone due to the larger
extent of the passive zone (400m) compared to the
active zone (60m). Particularly, the energy
consumed in the passive zone ranges from 60 to
130MWh at an average of 96MWh, as compared to
a range of 29e37MWh with an average of 33MWh
in the active zone.
The asymmetric data distribution is observed in

Fig. 3(d), describing the energy dissipated in the
passive zone. In turn, this results in asymmetric data
distribution in Fig. 3(b), which describes the total
energy consumption per one freeze pipe as the sum
of energy dissipated in the passive zone (shown in
Fig. 3(d)) with that in the active zone (shown in
Fig. 3(c)). Specifically, the results are somewhat
skewed to the left. As the skewness in the total en-
ergy consumed is attributed to the passive zone
rather than the active zone, the asymmetric behav-
iour is most likely attributed to the uncertainty of
pipes emissivity or collision contact length as these
parameters influence the passive zone only without
any effect in the active zone. Accordingly, the
skewness of total energy distribution is also
observed in Fig. 4(b) and Fig. 5(b), where the coolant
temperature and flow rate are fixed.

3.2. Fixing coolant inlet temperature (scenario 2)

In this subsection, the coolant inlet temperature is
fixed at �30 �C to observe its impact with respect to
other random parameters. First, it is observed that
the range of the freezing time has substantially
decreased, implying that the random variation of
the coolant inlet temperature substantially affects
the freezing time. Particularly, after fixing the
coolant inlet temperature, the range has decreased
from 80 days (270 days / 350 days) to eight days
only (308 days / 316 days). Accordingly, the stan-
dard deviation of the freezing time also decreased
from 17.2 days to 1.97 days only as shown in Table 2.

The energy consumed by each freeze-pipe is also
found to be somewhat affected by the variation of
the coolant inlet temperature. Particularly, the
standard deviation after fixing the coolant inlet
temperature has decreased from to 12.3 to
10.6MWh. Most of this difference in the cooling
load occurs due to variation in the energy consumed
in the active zone rather than the passive zone. The
standard deviation of the active zone cooling load in
scenario 2 is 15 times lower than that of scenario 1,
compared to 1.1 times only in the passive zone.

3.3. Fixing coolant flow rate (scenario 3)

In this subsection, the coolant flow rate is fixed at
2.5m3/h. Unlike the previous scenario, fixing the
volume flow rate has almost no effect on the freezing
time and energy consumed in the active. This is
implied by the identical statistical outcomes of sce-
nario 1 and scenario 3. The same observation is also
noted in the passive zone. Comparing the standard
deviations of both zones in Table 1 and Table 3, they
all share the same values for all outcomes.

3.4. Fixing pipes emissivity (scenario 4)

In this subsection, the pipes emissivity is fixed at
0.5 while varying all other parameters. Evidently,
the freezing time and energy consumed in the
passive zone are not affected by pipes emissivity
because radiation heat transfer only takes part in the
passive zone. However, energy consumed in the
passive zone is mostly affected by the emissivity as
compared to other uncertain input parameters.
Specifically, the standard deviation of energy
consumed in the passive zone has decreased from
11.7 to 8.33MWh as shown in Table 4.
Unlike the previous two scenarios, this scenario of

fixing pipes emissivity features a more symmetric
energy distribution in the total energy consumed
(Fig. 6(b)) as well as energy dissipated in the passive
zone (Fig. 6(d)). This demonstrates the role of the
pipes emissivity in causing an asymmetric distri-
bution of energy data as noted in Fig. 3(b), Fig. 4(b),
Fig. 5(b), and Fig. 7(b). This could be attributed to
the high incremental impact of pipes emissivity at
low levels (i.e., 0 to 0.5) compared to that at higher
levels. The higher incremental impact of pipes
emissivity at lower levels causes the energy data
distribution to be skewed to the left.

3.5. Fixing collision contact length (scenario 5)

In the last subsection, the collision contact length
between the inner pipes and the casing is fixed at
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5 cm while varying all others. The results reveal that
the uncertainty of the collision contact length mildly
affects the freezing time as well as energy consumed
in the passive zones. Specifically, the standard
deviation of the freezing time has decreased from
17.2 to 16.7 days as shown in Table 5. In addition, the
standard deviation of energy consumed in the pas-
sive zone has decreased from 11.7 to 10.6.

4. Conclusions

In this study, the impact of four uncertain opera-
tional parameters in selective artificial ground
freezing applications is examined: 1) coolant inlet
temperature, 2) coolant flow rate, 3) pipes emissiv-
ity, and 4) collision contact length due to inner pipes
eccentricity. A total of 5000 simulations are con-
ducted using Monte Carlo analysis with the aid of
field data to determine the distribution of uncertain
input parameters. The Monte Carlo simulations are
based on a computationally efficient reduced-order
model developed and validated in our previous
work [22]. Particularly, five sets of simulations are
conducted (1000 simulations each): 1) varying all
uncertain input parameters, 2) fixing the coolant
inlet temperature while varying other parameters,
3) fixing the coolant flow rate while varying other
parameters, 4) fixing pipes emissivity while varying
other parameters, and 5) fixing the collision contact
length while varying other parameters. The main
results and findings are listed below:

� The results of the first set of simulations indicate
that the freezing time can range between 270 and
350 days with an average of 310 days, whereas
the energy consumed per one freeze-pipe ranges
from 90 to 160MWh, with an average of
129MWh.

� The results of the second set of simulations
demonstrate that the energy consumed in the
active zone, as well as the freezing time, is
mostly dependent on the uncertain behaviour of
the coolant inlet temperature.

� In the third set of simulations, it is observed that
uncertainty of the volume flow rate has a negli-
gible impact on the freezing rate and energy
consumed.

� The fourth set of simulations reveals that energy
dissipated in the passive zone is mostly affected
by the uncertainty of pipes emissivity.

� In the final set, it is observed that freeze-pipe
eccentricity mildly affects the freezing rate and
energy consumption.

In our future work, we aim to integrate the uncer-
tainty of ground geological parameters alongside with

the operational ones considered in this study. Ulti-
mately, we aim to obtain a clear understanding of the
most influential parameters of S-AGF under opera-
tional and geological conditions. This analysis is useful
formining industries toproperly estimate the required
freezing time and operational costs of S-AGF.
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