
Archives of Control Sciences
Volume 27(LXIII), 2017

No. 2, pages 293–307

Mobile devices and computing cloud resources
allocation for interactive applications

HENRYK KRAWCZYK and MICHAŁ NYKIEL

Using mobile devices such as smartphones or iPads for various interactive applications is
currently very common. In the case of complex applications, e.g. chess games, the capabilities
of these devices are insufficient to run the application in real time. One of the solutions is to
use cloud computing. However, there is an optimization problem of mobile device and cloud
resources allocation. An iterative heuristic algorithm for application distribution is proposed.
The algorithm minimizes the energy cost of application execution with constrained execution
time.

Key words: mobile devices, computing cloud, task allocation, optimization.

1. Mobile cloud computing

The capabilities of mobile devices are increasing at a very fast pace. Average com-
puting power of smartphone CPU increased almost 4 times between 2011 and 2014 [1].
Access to the Internet is a fundamental feature of mobile devices today, and the connec-
tion speed of GSM networks almost tripled in 2013 - average download rate was around
520 Kbps in 2012, and almost 1.4 Mbps in 2013 [4]. It is estimated that by the year
2018 there will be more than 7.4 billion mobile devices with constant access to 3G or
4G networks, and global traffic in these networks will exceed 15 exabytes per month. It
is a result of the continuous growth of user demand, expecting direct access to Internet
services, multimedia, social networks and others.

While the computing power, memory capacity, size and resolution of the screens,
and number of various sensors in mobile devices grew rapidly, there is no similar devel-
opment of battery capacity. For example, the first iPhone, presented in 2007, had battery
capacity of 5180 mWh, and the iPhone 5s that debuted in 2013 had a 5960 mWh battery.
The huge increase in computing power in mobile devices corresponded with only a 15%
gain in battery capacity [20].

One of solutions for this problem is integration between the computing cloud and a
mobile device [19]. Thanks to the new generation of mobile networks, applications are

The Authors are with Gdańsk University of Technology, Poland. E-mails: {hkrawk,
micnykie}@pg.gda.pl. H. Krawczyk is the corresponding author.

Received 20.12.2016. Revised 29.04.2017.

10.1515/acsc-2017-0019

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

294 H. KRAWCZYK, M. NYKIEL

able to transmit significant amounts of data to services in the cloud. The idea of using
resource-rich remote machines to extend the capabilities of smartphones and tablets,
allows one to run computationally expensive tasks, while using minimal amounts of
device energy.

Many models and architectures for integrating mobile devices with the cloud were
proposed in the literature [18]. They differ by scope of integration and method of ap-
plication optimization – some were designed to maximize application performance [3],
others focus on minimizing energy consumption. Some solutions require manual opti-
mization, by annotating which components should be run on the cloud, and which on the
mobile device [15]. There are also a few frameworks that are using multi-objective opti-
mization [24]. Unfortunately, most of the proposed solutions require significant changes
in the mobile operating system [21].

Analysis of existing solutions in the field of mobile cloud computing leads to the
conclusion that there are a few common problems and challenges:

1. Implementing the mobile-cloud integration requires using specific architecture,
patterns, complier or language; so an existing application must be rewritten for
the most part.

2. Application partition must be often done manually, and automatic methods usually
take into account only one objective.

3. Software frameworks require significant modifications in the mobile device’s op-
erating system, which is not practical in real applications.

The solution proposed in this paper is an attempt to solve these problems and at
the same time accommodate experience from existing research in the field. The main
difference from frameworks like Clonecloud [3] or ThinkAir [11] is that the proposed
solution focuses on energy optimization while keeping the execution time under a spec-
ified value. It also does not require any changes in the mobile operating systems, unlike
the abovementioned Clonecloud [3] or Cloudlets [21]. In contrast to eXCloud [14] or
µCloud [15], the optimization and allocation is fully automatic.

2. Interactive application model

Almost all mobile applications have some form of graphical user interface (GUI),
and can be described as interactive applications; like games, social media, or different
kinds of content editing applications. The user is performing actions during the whole
life cycle of the application, inputs data, modifies the state in a nondeterministic way,
and the application reacts to these actions. Optimization of this type of application is a
bigger challenge than optimizing some batch programs, where the input is provided at
the start of execution, and data flow is predictable.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 295

Interactive applications are most commonly based on asynchronous events, coming
directly from the user, like mouse clicks, button presses, touches of the screen, but also
indirect interactions like timer events or network messages. In the case of the mobile
applications events from various sensors should also be considered, e.g. changes of the
device orientation, or the GPS location.

In response to these events, the application is presenting the output, typically in a
visual way. Event handling and rendering of the GUI are implemented with the event
queue and the event loop, which periodically consumes and processes events. Modern
mobile applications are targeting to render 60 frames per second, which means that every
event must be processed in under 16ms.

Obviously, there are events that cannot be processed in that time because, for exam-
ple, the event requires some interaction with remote services. Hence, the event handling
is usually done asynchronously, i.e. the actual processing is performed by threads dif-
ferent than GUI rendering. Only after the processing is finished, the event with results
is sent to the event queue and it causes re-rendering of the interface. The concept of the
event loop is presented in figure 1.

Figure 1: The event handling loop

The proposed application model is based on the functional-reactive program-
ming (FRP) paradigm. The core concept of this paradigm is the reactive, instead of
proactive, approach to data flow, i.e. reacting to events instead of passing messages
to functions. The FRP is similar to the classic observer pattern, but the event flow is
modeled with event streams, also called observables or signals in some programming
languages. Event processing is done strictly by so called operator functions, which are
adopted from the functional programming paradigm, e.g. mapping, filtering or reducing.

One of the first programming languages that introduced the FRP concept was
Haskell [17]. However, it was never broadly used in programming interactive applica-
tions, most likely because of its purely functional nature. One of the new languages that
is supposed to target the FRP paradigm is Elm [6]. There are also many frameworks and
libraries for popular programming languages that make it easy to use FRP concepts, like
Reactive Extensions [13] for C# or RxJS [16] and Cycle.js [23] for JavaScript.

Asynchronous events could be modeled as streams, i.e. sequences of events happen-
ing over time [7]. Event stream Se could be interpreted as a sequence of events vi. The
values of vi could be arbitrary, and the sequence could be finite, infinite or empty:

Se = ⟨vi,vi+1,vi+2, . . .⟩ (1)

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

296 H. KRAWCZYK, M. NYKIEL

In interactive applications we could distinguish three types of streams:

• input streams - event are generated outside the application and processed inside it,

• internal streams - events are generated and processed inside the application,

• output streams - events are generated inside the application but processed outside.

An example of an input stream is the stream of user interactions, e.g. the stream of touch
events. In this case the values are coordinates (x,y) of the finger touch, and xmax i ymax is
the width and height of the screen in pixels:

Stouch = ⟨(307,204),(521,149),(122,501), . . .⟩
x ∈ [0,xmax],y ∈ [0,ymax]

(2)

Other examples of input streams include network messages, timers or various types of
system interruptions.

Internal event streams are modeling the data flow inside the application. They are
generated by transforming one input stream, or a combination of multiple inputs. For
example, a stream of user interface element interactions can be generated from the screen
touch events. In this case the event values are identifiers of the GUI element:

Saction = ⟨(home button),(back button),(text input), . . .⟩ (3)

The application is usually generating multiple output streams. The most common
one is the stream of the graphical user interface state, which can be represented as the
following sequence of matrices presenting pixel colors p j,k:

S f rames = ⟨

p1,1 · · · p1,w

...
. . .

...
ph,1 · · · ph,w

i

,

p1,1 · · · p1,w

...
. . .

...
ph,1 · · · ph,w

i+1

, . . .⟩ (4)

The important characteristic of all event streams is that they are immutable, i.e. the event
value vi is constant during the whole application lifecycle.

Input streams Sin are processed and eventually converted to output streams Sout with
functions f called operators. Theoretically, the whole application can be modeled as a
single operator such as:

Sout = f (Sin) (5)

In practice, the application is divided into multiple operators with smaller scope,
however all of them have a common signature, i.e. they convert input streams to out-
put streams. One exception to that rule is the merge operator fmerge, that just combines
multiple streams into one:

Sout = fmerge(S0,S1, . . . ,Sn) (6)

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 297

Operators can be divided into two categories, pure and impure, analogically to func-
tions. Pure operators do not have any side-effects, and are stateless. It is a very conve-
nient property of an operator, because it guarantees that for any input event value v, the
operator will always produce the same result w:

f (⟨vi,vi+1, . . .⟩) = ⟨wi,wi+1, . . .⟩ : vi = v j =⇒ wi = w j

i ̸= j∧ i, j = 0,1,2, . . .
(7)

Thanks to this property, pure operators are deterministic, therefore it is easy to cache the
results, and test the correctness of the operator. Regarding the application optimization,
and partitioning the application to mobile devices and the cloud, the most important
feature of a pure operator is their independence from the rest of the application. In other
words, they can be isolated and moved to other environments without migrating any
extra state.

Two primary examples of pure operators are mapping and filtering. Mapping oper-
ator fmap is essentially a function in a mathematical sense, that for every input value vi
assigns an output value g(vi):

fmap(⟨vi,vi+1, . . .⟩) = ⟨g(vi),g(vi+1), . . .⟩ (8)

The filtering operator f f ilter generates an event stream with unchanged values, how-
ever some values can be omitted:

f f ilter(⟨vi,vi+1, . . .⟩) = ⟨vi : g(vi)> 0⟩ (9)

For practical reasons, not all operators could be pure and stateless. The most com-
mon operator that requires storing an internal state is the accumulation operator fscan,
sometimes called scan operator:

fscan(⟨v0,vi,vi+1, . . .⟩) = ⟨wi : wo = h(v0,0)∧wi = h(vi,h(vi−1))⟩ (10)

The interaction between the computer and the user is a two-way process in which
both sides produce and consume data, described in literature as human-computer inter-
action (HCI). The process is cyclical, however there is no strict order of the interactions,
i.e. the user can execute multiple actions without response from the computer, and the
computer can produce output without analyzing any input from the user.

In practice all interactions between the user and the computer are done through var-
ious I/O (input/output) devices. The computer may be modeled as a system, which in-
cludes I/O drivers and an application working in the operating system environment. The
application is not interacting directly with the user, instead it is communicating with
an abstraction layer provided by the operating system. Hence, from the application’s
point of view, we can simplify this model to the interaction between an application and
an operating system. The communication is usually done in an asynchronous way, in
the form of events, signals or interruptions. In consequence the interaction between the
application and the system can be modeled as a cycle of stream processing.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

298 H. KRAWCZYK, M. NYKIEL

Although the whole interaction is a cyclic and nondeterministic process, the event
processing performed inside the application can be modeled as a clearly defined directed
acyclic graph (DAG), in which nodes are operators, and edges are internal event streams.
The graph represents all possible execution flows for a single iteration – a time between a
single user interaction and the application outputting a new state (result). It is important
that although two operators are connected with an edge (stream) they not necessarily
have to produce and consume an event in every iteration. Hence, in the lifecycle of the
application some operators may be executed more frequently than others. An example
model of an application, namely a mobile chess game, is presented in figure 2.

Figure 2: Model of a chess game application

The application contains one input stream – screen touches. It is important to note
that the application does not have any global state, instead the game state is passed inside
the application in the form of a cyclic stream. There are N = 5 operators identified in
the application. The screen touches are mapped to actions (analyze action), i.e. certain
moves of the figures on the chessboard. From the stream of potential figure moves only
the valid moves are selected (validate move), and then merged with the current state of
the game, which in turn generates the new state of the game (make move). After every
other generated state the computer move is produced (AI move). In order to do this, the
state stream is mapped to an optimal move – computed by the AI algorithm – and merged

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 299

with the aforementioned potential figure moves stream. Lastly, the current state of the
game is drawn as a chessboard on the screen (draw board).

It is possible to split operators further, and obtain a graph with higher granularity.
Especially the AI move operator, seems like a quite complex mapping function, and thus
a good candidate to divide into a group of simpler operators. However, due to the imple-
mentation of the AI algorithm (a variant of the Minimax algorithm [10]), the resulting
set of operators would be tightly connected, with significant amounts of communication
between them, so moving some of those operators to the cloud would most likely result
in lower performance of the application.

3. Problem description and solution space

Optimization of a mobile application, modeled as described in section 2, relies on
partitioning the operators into two sets: those executed on the mobile device and those
executed in the computing cloud. The objective of the optimization is to minimize the
cost c of application execution and execution in the assumed time-frame tmax. The cost
is interpreted as the sum of all operators’ costs:

C =
N−1

∑
n=0

c(fn) (11)

In general, the cost is proportional to the CPU time used for executing the operator,
and may be also interpreted as the energy required to run the operator. Because some of
the operators may be executed in parallel on multi-core processors, the execution time is
equal to the critical path in the application model.

Theoretically, the cost and time of execution of every operator may be infinite, be-
cause the number of cycles in an interactive application may be infinite. Furthermore,
the number of cycles cannot be estimated, because it depends on nondeterministic be-
havior of the user. In order to find the exact solution of the optimization, every possible
combination of events should be considered. For instance, in the chess game application
there are 20 possibilities for the first move, and the number of possible game states is
increasing exponentially. The game finally ends in one of three states: white (user) win,
black (computer) win, or draw. The illustration of the game iterations is presented in
figure 3.

The number of all possible games P for I iterations can be calculated based on the
number of possible states m on every turn:

P = m0 ·m1 · . . . ·mI−1 (12)

The average number of turns in a chess game is estimated at around 40 for advanced
players [2]. In every turn there are two iterations – white player move and black player
move – so we can estimate that there are around 80 iterations in a typical chess game.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

300 H. KRAWCZYK, M. NYKIEL

Figure 3: Illustration of chess game iterations

The number of possible states can be different for every turn because of the varying
number and positions of the figures. However, the average number of states is estimated
at around 30 throughout the whole game [22]. Therefore, the number of possible chess
games could be estimated as:

P≈ m̄I = 3080 ≈ 10118 (13)

Considering that number of possible games, finding the exact optimization of the
whole game is impossible in a reasonable time. Hence, we will analyze the cost and the
time of a single iteration, i.e. execution of all operators between subsequent input events:

C =
I−1

∑
i=0

N−1

∑
n=0

c(fn(ei)) (14)

Despite the fact that, for every event, the cost and the time of executing the operator
may be different, the average cost and time of a single iteration is equal to the sum of
average costs and execution times of all operators:

C̄it =
1
I

I−1

∑
i=0

Ci =
1
I

I−1

∑
i=0

N−1

∑
n=0

c(fn(ei)) (15)

Therefore, in order to minimize the cost of application execution, we must minimize
the average cost of executing every operator. Taking into consideration the fact that oper-
ators may be executed in two environments – a mobile device or the cloud – the cost and
time of the data transfer must be included in the calculations. The easiest way to achieve
that is to model the communication as an additional transfer operator, that is added on
every internal stream which is transferred between the environments.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 301

4. Iterative optimization algorithm

To perform the exact optimization of an interactive application: first, we would have
to construct a graph that covers all the iterations, i.e. an I number of connected oper-
ator graphs. Therefore, the optimization must be performed on a graph that has N ∗ I
nodes, which would be very expensive for a high number of iterations, even when using
a heuristic algorithm [12].

However, the iterative nature of interactive applications allows you to effectively use
a greedy optimization strategy. In every iteration the algorithm finds the single most prof-
itable transition, i.e. the operator that, when moved to the other environment, would have
the maximum impact on lowering the summary execution cost, and still keep the exe-
cution time in the assumed time-frame. We expect that after some number of iterations,
that is significantly lower than the total number of iterations for the given application,
the heuristic algorithm should achieve near-optimal application partition.

function OPTIMIZE(operators)
dcmax← 0
operatormax← null
for all operators do

if operator in cloud then
dt← mobileTime(operator)− cloudTime(operator)
if t +dt ¬ tmax then

dc← cloudCost(operator)−mobileCost(operator)
if dc > dcmax then

dcmax← dc
operatormax← operator

else
dt← cloudTime(operator)−mobileTime(operator)
if t +dt ¬ tmax then

dc← mobileCost(operator)− cloudCost(operator)
if dc > dcmax then

dcmax← dc
operatormax← operator

return maxoperator

The algorithm pseudocode is presented in the listing. It returns an identifier of an
operator that should be moved from the mobile device to the cloud or vice versa. The
mobileTime(), mobileCost(), cloudTime() and cloudCost() functions return costs and
execution times for a given operator computed from the previous operator calls. We
assume that initial costs and times are equal to 0. The proposed algorithm’s time com-
plexity for a single iteration is O(N) depending on the number of operators.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

302 H. KRAWCZYK, M. NYKIEL

A software framework and management module is required to enable dynamic allo-
cation of an operator to the cloud or a mobile device in every iteration. Such an offloading
framework was developed, and a testing environment was set up, in order to test the al-
gorithm. The framework was built on top of RxJS [16] and CycleJS [23] libraries that
support developing interactive applications with architecture based on event streams.

The proposed iterative heuristic was also compared to the genetic optimization algo-
rithm [12] that calculated operator allocation a priori, before the application execution.
The genetic algorithm was proposed for static applications, where execution times are
constant throughout the lifecycle of the application, so the allocation for given operator
is also constant. As the algorithm requires historical data to perform the optimization,
operator execution and transfer times for 20 games were measured and averaged.

The tests were performed for the implemented chess application corresponding to
presented one in figure 2. Four methods of application allocation were evaluated:

• allMobile - the application running only on the mobile device,

• allCloud - all operators running in the cloud, with the mobile device acting as a
thin client,

• genetic - operators allocated to the mobile device or to the cloud before the ap-
plication execution by the heuristic genetic algorithm, optimization based on the
average costs for all iterations

• iterative - operators allocated to the mobile device or to the cloud on every iteration
by the heuristic optimization algorithm proposed above.

The tests were run on a mobile device emulator. As the performance of the actual
mobile devices vary greatly between different models, several ratios of the cloud com-
puting performance to the mobile device performance were simulated, ranging from the
1:1 ratio (the same performance on both environments) to 3:1 ratio (3 times faster com-
putation on the cloud). The network latency, for communication between the device and
the cloud, was set to 200ms. The charts presented in figure 4 show the varying iteration
duration (in milliseconds) throughout the whole game, from the beginning (0%) until the
end (100%). The data was averaged from 20 different chess games.

The average duration of the whole game for different cloud to mobile performance
ratios and allocation configurations are presented in table 1. Although the iterative opti-
mization algorithm does not give the optimal solution in every case, the difference from
the best allocation is always relatively small. Hence, with the iterative optimization algo-
rithm enabled, and with dynamic operator allocation, the average game duration across
all the cases is 13.4% lower than the allMobile allocation, and 12.5% lower than the all-
Cloud one. The genetic optimization algorithm favored moving the single operator with
the highest cost to the cloud (AI move), but because this algorithm does not consider
changing execution times, the results are comparable to the allCloud scenario.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 303

(a) 1:1 performance ratio

(b) 1.5:1 performance ratio

Figure 4: Iteration duration (in milliseconds) throughout the game

5. Conclusions

Optimization of an interactive mobile application using cloud computing has three
possible results: all operators are executed on the device, all operators are offloaded to the
cloud, or the operator graph is partitioned between those two environments. The example

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

304 H. KRAWCZYK, M. NYKIEL

(c) 2:1 performance ratio

(d) 3:1 performance ratio

Figure 4: Iteration duration (in milliseconds) throughout the game

chess game application showed that using only the mobile device is not optimal, because
of the complex processing involved in computing the AI moves. Offloading the whole
application to the cloud is also not ideal, because of the significant output data size for
the draw board operator. In fact, the optimal solution is to move only one operator to

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 305

Table 1: Average game durations

performance ratio allMobile allCloud genetic iterative
1:1 18.60 34.77 33.31 19.70

1.5:1 27.99 35.08 33.40 28.94
2:1 36.63 34.78 34.19 33.71
3:1 54.72 34.73 37.97 38.34

average 34.49 34.84 35,88 30.17

the cloud, for the middle part of the game, hence the iterative heuristic algorithm and
dynamic operator allocation are suitable in this case.

References

[1] H. BAUER, Y. GOH, S. SCHLINK and C. THOMAS: The supercomputer in your
pocket. McKinsey on Semiconductors, (Autumn), (2012), 14-27,

[2] Chessgames Services LLC: Chess Statistics.
http://www.chessgames.com/chessstats.html, 2016.

[3] B. CHUN, S. IHM, P. MANIATIS, M. NAIK and A. PATTI: Clonecloud: elastic
execution between mobile device and cloud. Proc. of the 6th Conf. on Computer
Systems, (2001), 301-314.

[4] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 2013–2018. 2014.

[5] E. CUERVO. A. BALASUBRAMANIAN, D. CHO, A. WOLMAN, S. SAROIU, R.
CHANDRA and P. BAHL: MAUI: making smartphones last longer with code of-
fload. Proc. of the 8th Int. Conf. on Mobile Systems, Applications, and Services,
(2010), 49-62.

[6] E. CZAPLICKI: Elm: Concurrent FRP for Functional GUIs. Senior thesis, Harvard
University, 2012.

[7] O. ETZION and P. NIBLETT: Event Processing in Action. Manning Publications
Co., 2010.

[8] J.X. HAO and J.B. ORLIN: A faster algorithm for finding the minimum cut in a
directed graph. J. of Algorithms, 17(3), (1994), 424-446.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

306 H. KRAWCZYK, M. NYKIEL

[9] R. KEMP, N. PALMER, T. KIELMANN and H. BAL: Cuckoo: a computation of-
floading framework for smartphones. Mobile Computing, Applications, and Ser-
vices. Springer, 2010, 59-79.

[10] R.E. KORF and D.M. CHICKERING: Best-first minimax search. Artificial Intelli-
gence, 84(1), (1996), 299-337.

[11] S. KOSTA, A. AUCINAS, P. HUI, R. MORTIER and X. ZHANG: Unleashing the
power of mobile cloud computing using thinkair. arXiv:1105.3232 [cs.DC], (2011).

[12] H. KRAWCZYK, M. NYKIEL and J. PROFICZ: Mobile offloading framework: So-
lution for optimizing mobile applications using cloud computing. Computer Net-
works, Springer International Publishing, (2015), 293-305.

[13] J. LIBERTY, P. BETTS and S. TURALSKI: Programming Reactive Extensions and
LINQ. Springer, 2011.

[14] R.K. MA, K.T. LAM and C. WANG: eXCloud: Transparent runtime support for
scaling mobile applications in cloud. Int. Conf. on Cloud and Service Computing,
(2011), 103-110.

[15] V.MARCH, Y. GU, E. LEONARDI, G. GOH, M. KIRCHBERG and B.S. LEE:
µcloud: towards a new paradigm of rich mobile applications. Procedia Computer
Science, 5 (2011), 618-624.

[16] Microsoft Open Technologies: The Reactive Extensions for JavaScript.
https://github.com/Reactive-Extensions/RxJS, 2016.

[17] H. NILSSON, A. COURTNEY and J. PETERSON: Functional reactive program-
ming, continued. Proc. of the 2002 ACM SIGPLAN Workshop on Haskell, (2002),
51-64.

[18] M. OTHMAN, S.A. MADANI and S.U. KHAN: A survey of mobile cloud comput-
ing application models. IEEE Communications Surveys & Tutorials, 16(1), (2014),
393-413.

[19] A. PATHAK, C. HU, M. ZHANG, P. BAHL and Y. WANG: Enabling automatic
offloading of resource-intensive smartphone applications. Purdue University, Elec-
trical and Computer Engineering Technical Report, 2011.

[20] M. SATYANARAYANAN: Mobile computing: the next decade. Proc. of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond,
(2010).

[21] M. SATYANARAYANAN, P. BAHL, R. CACERES and N. DAVIES: The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), (2009),
14-23.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

MOBILE DEVICES AND COMPUTING CLOUD RESOURCES ALLOCATION
FOR INTERACTIVE APPLICATIONS 307

[22] C. SHANNON: Programming a computer for playing chess. The London, Edin-
burgh, and Dublin Philosophical Magazine and J. of Science, 41(314), (1950),
256-275.

[23] A. STALTZ: Cycle.js – a Functional and Reactive JavaScript Framework for
Cleaner Code. http://cycle.js.org/, 2016.

[24] X. ZHANG, A. KUNJITHAPATHAM, S. JEONG and S. GIBBS: Towards an elastic
application model for augmenting the computing capabilities of mobile devices
with cloud computing. Mobile Networks and Applications, 16(3), (2011), 270-284.

Brought to you by | Politechnika Swietokrzyska - Kielce University of Technology
Authenticated

Download Date | 9/7/17 9:41 AM

